Package gplately

Intro GIF

Main objects

GPlately's common objects include:

DataServer

The DataServer object automatically downloads and caches files needed for plate reconstructions to a folder in your system. These plate reconstruction files include rotation models, topology features and static polygons and geometries such as coastlines, continents and continent-ocean boundaries. Additional data like rasters, grids and feature data can also be installed.

gdownload = gplately.download.DataServer("Muller2019")

# Download plate reconstruction files and geometries from the Müller et al. 2019 model
rotation_model, topology_features, static_polygons = gdownload.get_plate_reconstruction_files()
coastlines, continents, COBs = gdownload.get_topology_geometries()

# Download the Müller et al. 2019 100 Ma age grid
age_grid = gdownload.get_age_grid(time=100)

# Download the ETOPO1 geotiff raster
etopo = gdownload.get_raster("ETOPO1_tif")

DataServer supports the following plate reconstruction file collections which are bundled with the following data:


Model name string Identifier Rot. files Topology features Static polygons Coast-lines Cont-inents COB Age grids SR grids
Muller2019
Muller2016
Merdith2021
Cao2020
Clennett2020
Seton2012
Matthews2016
Merdith2017
Li2008
Pehrsson2015
TorsvikCocks2017
Young2019
Scotese2008
Clennett2020_M19
Clennett2020_S13
Muller2008
Muller2022
Scotese2016
Shephard2013

PlateReconstruction

The PlateReconstruction object contains tools to reconstruct geological features like tectonic plates and plate boundaries, and to interrogate plate kinematic data like plate motion velocities, and rates of subduction and seafloor spreading.

# Build a plate reconstruction model using a rotation model, a set of topology features and static polygons
model = gplately.PlateReconstruction(rotation_model, topology_features, static_polygons)

Points

Tools in the Points object track the motion of a point (or group of points) represented by a latitude and longitude through geologic time. This motion can be visualised using flowlines or motion paths and quantified with point motion velocities.

# Define some points using their latitude and longitude coordinates so we can track them though time!
pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

# Build a Points object from these points
gpts = gplately.Points(model, pt_lons, pt_lats)

PointsDemo

Raster

The Raster object contains tools to work with netCDF4 or MaskedArray gridded data. Grids may be filled, resized, resampled, and reconstructed back and forwards through geologic time. Other array data can also be interpolated onto Raster grids.

# Any numpy array can be turned into a Raster object!
raster = gplately.Raster(
    plate_reconstruction=model,
    data=array,
    extent="global",  # equivalent to (-180, 180, -90, 90)
    origin="lower",  # or set extent to (-180, 180, -90, 90)
)

# Reconstruct the raster data to 50 million years ago! 
reconstructed_raster = raster.reconstruct(time=50, partitioning_features=continents)

RasterDemo

PlotTopologies

PlotTopologies works with the aforementioned PlateReconstruction object to plot geologic features of different types listed here, as well as coastline, continent and continent-ocean boundary geometries reconstructed through time using pyGPlates.

gdownload = gplately.download.DataServer("Muller2019")

# Obtain features for the PlotTopologies object with DataServer
coastlines, continents, COBs = gdownload.get_topology_geometries()

# Call the PlotTopologies object
gplot = gplately.plot.PlotTopologies(
    model, # The PlateReconstruction object - it is an input parameter!
    time, 
    coastlines, continents, COBs
)

PlotTopologiesDemo

SeafloorGrid

The SeafloorGrid object wraps an automatic workflow to grid seafloor ages and seafloor spreading rates as encoded by a plate reconstruction model.

10-SeafloorGrids.ipynb is a tutorial notebook that demonstrates how to set up and use the SeafloorGrid object, and shows a sample set of output grids.

# Set up automatic gridding from 1000Ma to present day
seafloorgrid = gplately.SeafloorGrid(

    PlateReconstruction_object = model, #The PlateReconstruction object
    PlotTopologies_object = gplot, #The PlotTopologies object

    # Time parameters
    max_time = 1000, #Ma
    min_time = 0, #Ma
)

# Begin automatic gridding!
seafloorgrid.reconstruct_by_topologies()

SeafloorGridDemo

Notebooks / Examples

Expand source code
"""

![Intro GIF](https://raw.githubusercontent.com/GPlates/gplately/master/Notebooks/NotebookFiles/pdoc_Files/docs_muller19_seed_points.gif)

## Main objects
GPlately's common objects include:

### [DataServer ](https://gplates.github.io/gplately/download.html#gplately.download.DataServer)
The `DataServer` object automatically downloads and caches files needed for plate reconstructions to a folder in your system.
These plate reconstruction files include rotation models, topology features and static polygons and geometries such as 
coastlines, continents and continent-ocean boundaries. Additional data like rasters, grids and feature data can also be installed. 

```python
gdownload = gplately.download.DataServer("Muller2019")

# Download plate reconstruction files and geometries from the Müller et al. 2019 model
rotation_model, topology_features, static_polygons = gdownload.get_plate_reconstruction_files()
coastlines, continents, COBs = gdownload.get_topology_geometries()

# Download the Müller et al. 2019 100 Ma age grid
age_grid = gdownload.get_age_grid(time=100)

# Download the ETOPO1 geotiff raster
etopo = gdownload.get_raster("ETOPO1_tif")
```

`DataServer` supports the following plate reconstruction file collections which are bundled with the following data:

------------------

| **Model name string Identifier** | **Rot. files** | **Topology features** | **Static polygons** | **Coast-lines** | **Cont-inents** | **COB** | **Age grids** | **SR grids** |
|:--------------------------------:|:--------------:|:---------------------:|:-------------------:|:---------------:|:---------------:|:--------:|:-------------:|:------------:|
|            Muller2019            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ✅    |       ✅       |       ❌      |
|            Muller2016            |        ✅       |           ✅           |          ✅          |        ✅        |        ❌        |     ❌    |       ✅       |       ❌      |
|            Merdith2021           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|              Cao2020             |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|           Clennett2020           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ✅       |       ✅      |
|             Seton2012            |        ✅       |           ✅           |          ❌          |        ✅        |        ❌        |     ✅    |       ✅       |       ❌      |
|           Matthews2016           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|            Merdith2017           |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
|              Li2008              |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
|           Pehrsson2015           |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
|         TorsvikCocks2017         |        ✅       |           ❌           |          ❌          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |
|             Young2019            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|            Scotese2008           |        ✅       |           ✅           |          ❌          |        ❌        |        ✅        |     ❌    |       ❌       |       ❌      |
|         Clennett2020_M19         |        ✅       |           ✅           |          ❌          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|         Clennett2020_S13         |        ✅       |           ✅           |          ❌          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
|            Muller2008            |        ✅       |           ❌           |          ✅          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
|            Muller2022            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ✅    |       ❌       |       ❌      |
|            Scotese2016           |        ✅       |           ❌           |          ✅          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |
|           Shephard2013           |        ✅       |           ✅           |          ✅          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |

------------------

### [PlateReconstruction](https://gplates.github.io/gplately/reconstruction.html#gplately.reconstruction.PlateReconstruction)
The `PlateReconstruction` object contains tools to reconstruct geological features like tectonic plates and plate boundaries,
and to interrogate plate kinematic data like plate motion velocities, and rates of subduction and seafloor spreading.

```python
# Build a plate reconstruction model using a rotation model, a set of topology features and static polygons
model = gplately.PlateReconstruction(rotation_model, topology_features, static_polygons)
```

### [Points](https://gplates.github.io/gplately/reconstruction.html#gplately.reconstruction.Points)
Tools in the `Points` object track the motion of a point (or group of points) represented by a latitude and longitude 
through geologic time. This motion can be visualised using flowlines or motion paths and quantified with point 
motion velocities.

```python
# Define some points using their latitude and longitude coordinates so we can track them though time!
pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

# Build a Points object from these points
gpts = gplately.Points(model, pt_lons, pt_lats)
```
![PointsDemo](https://raw.githubusercontent.com/GPlates/gplately/master/Notebooks/NotebookFiles/pdoc_Files/Hawaii_Emperor_motion_path.png)


### [Raster](https://gplates.github.io/gplately/grids.html#gplately.grids.Raster)
The `Raster` object contains tools to work with netCDF4 or MaskedArray gridded data. Grids may be filled, 
resized, resampled, and reconstructed back and forwards through geologic time. Other array data can also be 
interpolated onto `Raster` grids.  

```python
# Any numpy array can be turned into a Raster object!
raster = gplately.Raster(
    plate_reconstruction=model,
    data=array,
    extent="global",  # equivalent to (-180, 180, -90, 90)
    origin="lower",  # or set extent to (-180, 180, -90, 90)
)

# Reconstruct the raster data to 50 million years ago! 
reconstructed_raster = raster.reconstruct(time=50, partitioning_features=continents)
```

![RasterDemo](https://raw.githubusercontent.com/GPlates/gplately/master/Notebooks/NotebookFiles/pdoc_Files/etopo_reconstruction.png)


### [PlotTopologies](https://gplates.github.io/gplately/plot.html#gplately.plot.PlotTopologies)
`PlotTopologies` works with the aforementioned `PlateReconstruction` object to plot
geologic features of different types listed 
[here](https://gplates.github.io/gplately/plot.html#gplately.plot.PlotTopologies), as well as 
coastline, continent and continent-ocean boundary geometries reconstructed through time using pyGPlates. 

```python
gdownload = gplately.download.DataServer("Muller2019")

# Obtain features for the PlotTopologies object with DataServer
coastlines, continents, COBs = gdownload.get_topology_geometries()

# Call the PlotTopologies object
gplot = gplately.plot.PlotTopologies(
    model, # The PlateReconstruction object - it is an input parameter!
    time, 
    coastlines, continents, COBs
)
```

![PlotTopologiesDemo](https://raw.githubusercontent.com/GPlates/gplately/master/Notebooks/NotebookFiles/pdoc_Files/plottopologies.png)

### [SeafloorGrid](https://gplates.github.io/gplately/oceans.html#gplately.oceans.SeafloorGrid)
The `SeafloorGrid` object wraps an automatic workflow to grid seafloor ages and seafloor spreading rates
as encoded by a plate reconstruction model. 

[10-SeafloorGrids.ipynb](../gplately/Notebooks/10-SeafloorGrids.ipynb) is a tutorial notebook that demonstrates
how to set up and use the `SeafloorGrid` object, and shows a sample set of output grids. 

```python
# Set up automatic gridding from 1000Ma to present day
seafloorgrid = gplately.SeafloorGrid(

    PlateReconstruction_object = model, #The PlateReconstruction object
    PlotTopologies_object = gplot, #The PlotTopologies object
    
    # Time parameters
    max_time = 1000, #Ma
    min_time = 0, #Ma
)

# Begin automatic gridding!
seafloorgrid.reconstruct_by_topologies()
```

![SeafloorGridDemo](https://raw.githubusercontent.com/GPlates/gplately/master/Notebooks/NotebookFiles/pdoc_Files/seafloorgrid.gif)


## Notebooks / Examples

- [__01 - Getting Started__](01-GettingStarted.html): A brief overview of how to initialise GPlately's main objects
- [__02 - Plate Reconstructions__](02-PlateReconstructions.html): Setting up a `PlateReconstruction` object, reconstructing geological data through time 
- [__03 - Working with Points__](03-WorkingWithPoints.html): Setting up a `Points` object, reconstructing seed point locations through time with. This notebook uses point data from the Paleobiology Database (PBDB).
- [__04 - Velocity Basics__](04-VelocityBasics.html): Calculating plate velocities, plotting velocity vector fields
- [__05 - Working with Feature Geometries__](05-WorkingWithFeatureGeometries.html): Processing and plotting assorted polyline, polygon and point data from [GPlates 2.3's sample data sets](https://www.earthbyte.org/gplates-2-3-software-and-data-sets/)
- [__06 - Rasters__](06-Rasters.html): Reading, resizing, resampling raster data, and linearly interpolating point data onto raster data
- [__07 - Plate Tectonic Stats__](07-WorkingWithPlateTectonicStats.html): Using [PlateTectonicTools](https://github.com/EarthByte/PlateTectonicTools) to calculate and plot subduction zone and ridge data (convergence/spreading velocities, subduction angles, subduction zone and ridge lengths, crustal surface areas produced and subducted etc.) 
- [__08 - Predicting Slab Flux__](08-PredictingSlabFlux.html): Predicting the average slab dip angle of subducting oceanic lithosphere.
- [__09 - Motion Paths and Flowlines__](09-CreatingMotionPathsAndFlowlines.html): Using pyGPlates to create motion paths and flowines of points on a tectonic plate to illustrate the plate's trajectory through geological time.
- [__10 - SeafloorGrid__](10-SeafloorGrids.html): Defines the parameters needed to set up a `SeafloorGrid` object, and demonstrates how to produce age and spreading rate grids from a set of plate reconstruction model files.

"""

__version__ = "1.3.0"

try:
    import plate_model_manager
except ImportError:
    print("The plate_model_manager is not installed, installing it now!")
    import subprocess
    import sys

    subprocess.call([sys.executable, "-m", "pip", "install", "plate-model-manager"])
    import plate_model_manager

from . import (
    data,
    download,
    geometry,
    gpml,
    grids,
    oceans,
    plot,
    ptt,
    pygplates,
    read_geometries,
    reconstruction,
)
from .data import DataCollection
from .download import DataServer
from .grids import Raster
from .oceans import SeafloorGrid
from .plot import PlotTopologies
from .read_geometries import get_geometries, get_valid_geometries
from .reconstruction import (
    PlateReconstruction,
    Points,
    _ContinentCollision,
    _DefaultCollision,
    _ReconstructByTopologies,
)
from .tools import EARTH_RADIUS

__pdoc__ = {
    "data": False,
    "_DefaultCollision": False,
    "_ContinentCollision": False,
    "_ReconstructByTopologies": False,
}

__all__ = [
    # Modules
    "data",
    "download",
    "geometry",
    "gpml",
    "grids",
    "oceans",
    "plot",
    "pygplates",
    "read_geometries",
    "reconstruction",
    "plate_model_manager",
    "ptt",
    # Classes
    "DataCollection",
    "DataServer",
    "PlateReconstruction",
    "PlotTopologies",
    "Points",
    "Raster",
    "SeafloorGrid",
    "_ContinentCollision",
    "_DefaultCollision",
    "_ReconstructByTopologies",
    # Functions
    "get_geometries",
    "get_valid_geometries",
    # Constants
    "EARTH_RADIUS",
]

Sub-modules

gplately.download

Functions for downloading assorted plate reconstruction data to use with GPlately's main objects. Files are stored in the user's cache and can be …

gplately.examples
gplately.feature_filter
gplately.geometry

Tools for converting PyGPlates or GPlately geometries to Shapely geometries for mapping (and vice versa) …

gplately.gpml

Tools for manipulating GPML (.gplately.gpml, .gpmlz) files and Feature and FeatureCollection objects …

gplately.grids

Tools for working with MaskedArray, ndarray and netCDF4 rasters, as well as gridded-data …

gplately.notebooks
gplately.oceans

A module to generate grids of seafloor age, seafloor spreading rate and other oceanic data from the PlateReconstruction and …

gplately.parallel

Tools to execute routines efficiently by parallelising them over several threads. This uses multiple processing units.

gplately.plot

Tools for reconstructing and plotting geological features and feature data through time …

gplately.ptt
gplately.pygplates

A light wrapping of some pyGPlates classes to keep track of filenames …

gplately.read_geometries

Tools to read geometry data from input files and output them as Shapely geometries. These geometries can be plotted directly with GPlately's …

gplately.reconstruction

Tools that wrap up pyGplates and Plate Tectonic Tools functionalities for reconstructing features, working with point data, and calculating plate …

gplately.tools

A module that offers tools for executing common geological calculations, mathematical conversions and numpy conversions.

Functions

def get_geometries(filename, buffer=None)

Read a file and return feature geometries.

If geopandas is available, it will be used to read the file, returning a geopandas.GeoSeries. If geopandas is not found, only shapefiles can be read, and a list of shapely geometries will be returned instead of a geopandas.GeoSeries.

Parameters

filename : str
Path to the file to be read.

Returns

geometries : list or geopandas.GeoSeries
shapely geometries that define the feature geometry held in the shapefile. Can be plotted directly using gplately.plot.add_geometries.
Expand source code
def get_geometries(filename, buffer=None):
    """Read a file and return feature geometries.

    If `geopandas` is available, it will be used to read the file,
    returning a `geopandas.GeoSeries`. If `geopandas` is not found,
    only shapefiles can be read, and a list of `shapely` geometries
    will be returned instead of a `geopandas.GeoSeries`.

    Parameters
    ----------
    filename : str
        Path to the file to be read.

    Returns
    -------
    geometries : list or geopandas.GeoSeries
        `shapely` geometries that define the feature geometry held in the
        shapefile. Can be plotted directly using
        `gplately.plot.add_geometries`.
    """
    if USE_GEOPANDAS:
        return _get_geometries_geopandas(filename, buffer=buffer)
    return _get_geometries_cartopy(filename, buffer=buffer)
def get_valid_geometries(filename)

Read a file and return valid feature geometries.

If geopandas is available, it will be used to read the file, returning a geopandas.GeoSeries. If geopandas is not found, only shapefiles can be read, and a list of shapely geometries will be returned instead of a geopandas.GeoSeries.

Parameters

filename : str
Path to the file to be read.

Returns

geometries : list or geopandas.GeoSeries
Valid shapely geometries that define the feature geometry held in the shapefile. Can be plotted directly using gplately.plot.add_geometries.
Expand source code
def get_valid_geometries(filename):
    """Read a file and return valid feature geometries.

    If `geopandas` is available, it will be used to read the file,
    returning a `geopandas.GeoSeries`. If `geopandas` is not found,
    only shapefiles can be read, and a list of `shapely` geometries
    will be returned instead of a `geopandas.GeoSeries`.

    Parameters
    ----------
    filename : str
        Path to the file to be read.

    Returns
    -------
    geometries : list or geopandas.GeoSeries
        Valid `shapely` geometries that define the feature geometry held in the
        shapefile. Can be plotted directly using
        `gplately.plot.add_geometries`.
    """
    return get_geometries(filename, buffer=0.0)

Classes

class DataCollection (file_collection)

GPlately's collection of plate model data is a dictionary where the plate model's identifier string is the key, and values are lists containing any relevant file download links.

Uses a string to identify the needed plate model, taken from .

Expand source code
class DataCollection(object):
    """GPlately's collection of plate model data is a dictionary where
    the plate model's identifier string is the key, and values are 
    lists containing any relevant file download links."""

    def __init__(self, file_collection):
        """Uses a string to identify the needed plate model, taken from
        <gplately.data.DataServer>."""
        # Allow strings with capitalisation anywhere.
        database = [model_name.lower() for model_name in self.plate_reconstruction_files()]
        if file_collection.lower() not in database:
            raise ValueError("Enter a valid plate model identifier, e.g. Muller2019, Seton2012, etc.")

        self.file_collection = file_collection.capitalize()


    def netcdf4_age_grids(self, time):

        age_grid_links = {

            "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_Agegrids/Muller_etal_2019_Tectonics_v2.0_netCDF/Muller_etal_2019_Tectonics_v2.0_AgeGrid-{}.nc"],
            "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Agegrids/Muller_etal_2016_AREPS_Agegrids_v1.17/Muller_etal_2016_AREPS_v1.17_netCDF/Muller_etal_2016_AREPS_v1.17_AgeGrid-{}.nc"],
            "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR/Seton_etal_2012_ESR_Agegrids/netCDF_0-200Ma/agegrid_{}.nc"],
            "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennet_AgeGrids_0.1d_masked/seafloor_age_mask_{}.0Ma.nc"]
        }

        links_to_download = _find_needed_collection(
            self.file_collection, 
            age_grid_links,
            time)

        return links_to_download


    def netcdf4_spreading_rate_grids(self, time):

        spread_grid_links = {

            "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_SpreadRate_Grids/rategrid_final_mask_{}.nc"]
        }

        links_to_download = _find_needed_collection(
            self.file_collection, 
            spread_grid_links,
            time)

        return links_to_download

        
    def plate_reconstruction_files(self):

        database = {

            "Cao2020" : ["https://zenodo.org/record/3854549/files/1000Myr_synthetic_tectonic_reconstructions.zip"],
            "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_PlateMotionModel/Muller_etal_2019_PlateMotionModel_v2.0_Tectonics_Updated.zip"], 
            "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Supplement/Muller_etal_2016_AREPS_Supplement_v1.17.zip"],
            "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific.zip"],
            "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR.zip"],
            #"Merdith2021" : ["https://zenodo.org/record/4485738/files/SM2_4485738_V2.zip"],
            "Merdith2021" : ["https://earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2021_ESR/SM2-Merdith_et_al_1_Ga_reconstruction_v1.1.zip"],
            "Matthews2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Matthews_etal_2016_Global_Plate_Model_GPC.zip"], 
            "Merdith2017" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2017_GR.zip"], 
            "Li2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Li_etal_2008_RodiniaModel.zip"],
            "Pehrsson2015" : ["https://www.geolsoc.org.uk/~/media/Files/GSL/shared/Sup_pubs/2015/18822_7.zip"],
            "TorsvikCocks2017" : ["http://www.earthdynamics.org/earthhistory/bookdata/CEED6.zip"],
            "Young2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Young_etal_2018_GeoscienceFrontiers/Young_etal_2018_GeoscienceFrontiers_GPlatesPlateMotionModel.zip"], 
            "Scotese2008" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],      
            "Golonka2007" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
            "Clennett2020_M2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_M2019.zip"],
            "Clennett2020_S2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_S2013.zip"],
            "Muller2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller2008/Global_Model_Rigid_Internal_Release_2010.zip"],
            "Scotese2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese2016/PALEOMAP_GlobalPlateModel.zip"],
            "Shephard2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Shephard_etal_2013_ESR.zip"],
            "Muller2022" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2022_SE/Muller_etal_2022_SE_1Ga_Opt_PlateMotionModel_v1.1.zip"],
            "Cao2023" :["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023/1.8Ga_model_submit.zip"],
            "Cao2023_Opt" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023_Opt/Cao1800Opt.zip"],

        }

        return database


    def plate_model_valid_reconstruction_times(self):

        database = {

            "Cao2020" : [0, 1000],
            "Muller2019" : [0, 250], 
            "Muller2016" : [0, 230],
            "Clennett2020" : [0, 170],
            "Seton2012" : [0, 200],
            "Merdith2021" : [0, 1000],
            "Matthews2016" : [0, 410], 
            "Merdith2017" : [0, 410], 
            "Li2008" : [0, 410],
            # "Pehrsson2015" : [25], (First implement continuous rotation)
            "TorsvikCocks2017" : [0, 410],
            "Young2019" : [0, 410], 
            "Scotese2008" : [0, 410],      
            "Golonka2007" : [0, 410],
            "Clennett2020_M2019" : [0, 170],
            "Clennett2020_S2013" : [0, 170],
            "Scotese2016" : [0,410],
            "Shephard2013" : [0,200],
            "Muller2008" : [0,141], #GPlates static polygons reconstruct to this time
            "Muller2022" : [0,1000],
            "Cao2023" : [0,1800],
            "Cao2023_Opt" : [0,1800],

        }  
        return database


    def rotation_strings_to_include(self):

        strings = [

            "Muller2022 1000_0_rotfile_Merdith_et_al_optimised.rot", # For Muller et al. 2022
        ]
        return strings


    def rotation_strings_to_ignore(self):

        strings = [
            "OLD",
            "__MACOSX",
            "DO_NOT",
            "Blocks_crossing_Poles"
        ]    
        return strings


    def dynamic_polygon_strings_to_include(self):

        strings = [
            "plate_boundaries",
            "PlateBoundaries",
            "Transform",
            "Divergence",
            "Convergence",
            "Topologies",
            "Topology",
            "_PP_", # for Seton 2012
            #"ContinentOceanBoundaries",
            #"Seton_etal_ESR2012_Coastline_2012",
            "Deforming_Mesh",
            "Deforming",
            "Flat_Slabs",
            "Feature_Geometries",
            "boundaries",
            "Clennett_etal_2020_Plates", # For Clennett 2020 (M2019)
            "Clennett_2020_Plates", # For topologies in Clennett et al 2020 (Pacific)
            "Clennett_2020_Terranes", # For topologies in Clennett et al 2020 (Pacific)
            "Angayucham",
            "Farallon",
            "Guerrero",
            "Insular",
            "Intermontane",
            "Kula",
            "North_America",
            "South_America",
            "Western_Jurassic",
            "Clennett_2020_Isochrons",
            "Clennett_2020_Coastlines",
            "Clennett_2020_NAm_boundaries",
            "Shephard_etal_ESR2013_Global_EarthByte_2013", # For Shephard et al. 2013
            "1800-1000Ma-plate-boundary_new_valid_time_and_subduction_polarity.gpml", # for Cao2023

        ]
        return strings 


    def dynamic_polygon_strings_to_ignore(self):

        strings = [
            "OLD",
            "__MACOSX",
            "DO_NOT",
            "9_Point", # Muller et al 2019
            "9_Point_Density", # Clennett et al 2020
            "Density", # Clennett et al 2020
            "Inactive_Meshes_and_Topologies", # Clennett et al 2020
            "ContinentOceanBoundaries", # Seton 2012
            "Seton_etal_ESR2012_Coastline_2012", # Seton 2012
            "PALEOMAP_PoliticalBoundaries", # Scotese 2016
            "SimplifiedFiles",  # Muller et al. 2019 (updated)
            "1000-410_poles", # Merdith 
        ]
        return strings


    def static_polygon_strings_to_include(self):

        strings = [
            "StaticPolygon",
            "StaticPolygons",
            "Static_Polygon",
            "StaticPlatePolygons_",
            "RodiniaBlocks_WithPlateIDColumnAndIDs",
            # "PlatePolygons.shp",
            "CEED6_TERRANES.shp",
            "CEED6_MICROCONTINENTS.shp",
            "CEED6_LAND.gpml",
            "Scotese_2008_PresentDay_ContinentalPolygons", # Scotese 2008
            "Golonka_2007_PresentDay_ContinentalPolygons.shp", # Golonka 2007
            "PALEOMAP_PlatePolygons.gpml", # For Scotese 2016
        ]
        return strings


    def static_polygon_strings_to_ignore(self):

        strings = [

            "DO_NOT",
            "OLD",
            "__MACOSX",
            "Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific/StaticGeometries/StaticPolygons/Global_EarthByte_GPlates_PresentDay_StaticPlatePolygons.shp" # Clennett 2020

        ]
        return strings


    def topology_geometries(self):

        database = {

            "Cao2020" : ["https://zenodo.org/record/3854549/files/1000Myr_synthetic_tectonic_reconstructions.zip"],
            "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_PlateMotionModel/Muller_etal_2019_PlateMotionModel_v2.0_Tectonics_Updated.zip"], 
            "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Supplement/Muller_etal_2016_AREPS_Supplement_v1.17.zip"],
            "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific.zip"],
            "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR.zip"],
            #"Merdith2021" : ["https://zenodo.org/record/4485738/files/SM2_4485738_V2.zip"],
            "Merdith2021" : ["https://earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2021_ESR/SM2-Merdith_et_al_1_Ga_reconstruction_v1.1.zip"],
            "Matthews2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Matthews_etal_2016_Global_Plate_Model_GPC.zip"], 
            "Merdith2017" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2017_GR.zip"],  
            "Li2008" : [None],
            "Pehrsson2015" : ["https://www.geolsoc.org.uk/~/media/Files/GSL/shared/Sup_pubs/2015/18822_7.zip"],
            "TorsvikCocks2017" : ["http://www.earthdynamics.org/earthhistory/bookdata/CEED6.zip"],
            "Young2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Young_etal_2018_GeoscienceFrontiers/Young_etal_2018_GeoscienceFrontiers_GPlatesPlateMotionModel.zip"],
            "Scotese2008" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
            "Golonka2007" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
            "Clennett2020_M2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_M2019.zip"],
            "Clennett2020_S2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_S2013.zip"],
            "Muller2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller2008/Global_Model_Rigid_Internal_Release_2010.zip"],
            "Scotese2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese2016/PALEOMAP_GlobalPlateModel.zip"],
            "Shephard2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Shephard_etal_2013_ESR.zip"],
            "Muller2022" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2022_SE/Muller_etal_2022_SE_1Ga_Opt_PlateMotionModel_v1.1.zip"],
            "Cao2023" :["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023/1.8Ga_model_submit.zip"],
            "Cao2023_Opt" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023_Opt/Cao1800Opt.zip"],

        }
        return database


    def coastline_strings_to_include(self):

        strings = [

            "coastline",
            "CEED6_LAND.gpml", # for TorsvikCocks2017
            "PALEOMAP_PoliticalBoundaries", # For Scotese 2016
            "coast", # for Cao2023
        ]
        return strings


    def coastline_strings_to_ignore(self):

        strings = [

            "DO_NOT",
            "OLD",
            "__MACOSX",
            "Clennett_2020_Coastlines", # Clennett et al. 2020
            "COB_polygons_and_coastlines_combined_1000_0_Merdith_etal", # Muller et al. 2022
        ]
        return strings


    def continent_strings_to_include(self):

        strings = [

            "continent",
            "COBfile_1000_0_Toy_introversion",
            "continental",
            "Scotese_2008_PresentDay_ContinentalPolygons.shp", # Scotese 2008
            # "Terrane",
        ]
        return strings


    def continent_strings_to_ignore(self):

        strings = [

            "DO_NOT",
            "OLD",
            "__MACOSX",
            "Continent-ocean_boundaries",
            "COB",
        ]
        return strings


    def COB_strings_to_include(self):

        strings = [

            "cob",
            "ContinentOceanBoundaries",
            "COBLineSegments",
        ]
        return strings


    def COB_strings_to_ignore(self):

        strings = [

            "DO_NOT",
            "OLD",
            "__MACOSX",
        ]
        return strings

Methods

def COB_strings_to_ignore(self)
Expand source code
def COB_strings_to_ignore(self):

    strings = [

        "DO_NOT",
        "OLD",
        "__MACOSX",
    ]
    return strings
def COB_strings_to_include(self)
Expand source code
def COB_strings_to_include(self):

    strings = [

        "cob",
        "ContinentOceanBoundaries",
        "COBLineSegments",
    ]
    return strings
def coastline_strings_to_ignore(self)
Expand source code
def coastline_strings_to_ignore(self):

    strings = [

        "DO_NOT",
        "OLD",
        "__MACOSX",
        "Clennett_2020_Coastlines", # Clennett et al. 2020
        "COB_polygons_and_coastlines_combined_1000_0_Merdith_etal", # Muller et al. 2022
    ]
    return strings
def coastline_strings_to_include(self)
Expand source code
def coastline_strings_to_include(self):

    strings = [

        "coastline",
        "CEED6_LAND.gpml", # for TorsvikCocks2017
        "PALEOMAP_PoliticalBoundaries", # For Scotese 2016
        "coast", # for Cao2023
    ]
    return strings
def continent_strings_to_ignore(self)
Expand source code
def continent_strings_to_ignore(self):

    strings = [

        "DO_NOT",
        "OLD",
        "__MACOSX",
        "Continent-ocean_boundaries",
        "COB",
    ]
    return strings
def continent_strings_to_include(self)
Expand source code
def continent_strings_to_include(self):

    strings = [

        "continent",
        "COBfile_1000_0_Toy_introversion",
        "continental",
        "Scotese_2008_PresentDay_ContinentalPolygons.shp", # Scotese 2008
        # "Terrane",
    ]
    return strings
def dynamic_polygon_strings_to_ignore(self)
Expand source code
def dynamic_polygon_strings_to_ignore(self):

    strings = [
        "OLD",
        "__MACOSX",
        "DO_NOT",
        "9_Point", # Muller et al 2019
        "9_Point_Density", # Clennett et al 2020
        "Density", # Clennett et al 2020
        "Inactive_Meshes_and_Topologies", # Clennett et al 2020
        "ContinentOceanBoundaries", # Seton 2012
        "Seton_etal_ESR2012_Coastline_2012", # Seton 2012
        "PALEOMAP_PoliticalBoundaries", # Scotese 2016
        "SimplifiedFiles",  # Muller et al. 2019 (updated)
        "1000-410_poles", # Merdith 
    ]
    return strings
def dynamic_polygon_strings_to_include(self)
Expand source code
def dynamic_polygon_strings_to_include(self):

    strings = [
        "plate_boundaries",
        "PlateBoundaries",
        "Transform",
        "Divergence",
        "Convergence",
        "Topologies",
        "Topology",
        "_PP_", # for Seton 2012
        #"ContinentOceanBoundaries",
        #"Seton_etal_ESR2012_Coastline_2012",
        "Deforming_Mesh",
        "Deforming",
        "Flat_Slabs",
        "Feature_Geometries",
        "boundaries",
        "Clennett_etal_2020_Plates", # For Clennett 2020 (M2019)
        "Clennett_2020_Plates", # For topologies in Clennett et al 2020 (Pacific)
        "Clennett_2020_Terranes", # For topologies in Clennett et al 2020 (Pacific)
        "Angayucham",
        "Farallon",
        "Guerrero",
        "Insular",
        "Intermontane",
        "Kula",
        "North_America",
        "South_America",
        "Western_Jurassic",
        "Clennett_2020_Isochrons",
        "Clennett_2020_Coastlines",
        "Clennett_2020_NAm_boundaries",
        "Shephard_etal_ESR2013_Global_EarthByte_2013", # For Shephard et al. 2013
        "1800-1000Ma-plate-boundary_new_valid_time_and_subduction_polarity.gpml", # for Cao2023

    ]
    return strings 
def netcdf4_age_grids(self, time)
Expand source code
def netcdf4_age_grids(self, time):

    age_grid_links = {

        "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_Agegrids/Muller_etal_2019_Tectonics_v2.0_netCDF/Muller_etal_2019_Tectonics_v2.0_AgeGrid-{}.nc"],
        "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Agegrids/Muller_etal_2016_AREPS_Agegrids_v1.17/Muller_etal_2016_AREPS_v1.17_netCDF/Muller_etal_2016_AREPS_v1.17_AgeGrid-{}.nc"],
        "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR/Seton_etal_2012_ESR_Agegrids/netCDF_0-200Ma/agegrid_{}.nc"],
        "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennet_AgeGrids_0.1d_masked/seafloor_age_mask_{}.0Ma.nc"]
    }

    links_to_download = _find_needed_collection(
        self.file_collection, 
        age_grid_links,
        time)

    return links_to_download
def netcdf4_spreading_rate_grids(self, time)
Expand source code
def netcdf4_spreading_rate_grids(self, time):

    spread_grid_links = {

        "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_SpreadRate_Grids/rategrid_final_mask_{}.nc"]
    }

    links_to_download = _find_needed_collection(
        self.file_collection, 
        spread_grid_links,
        time)

    return links_to_download
def plate_model_valid_reconstruction_times(self)
Expand source code
def plate_model_valid_reconstruction_times(self):

    database = {

        "Cao2020" : [0, 1000],
        "Muller2019" : [0, 250], 
        "Muller2016" : [0, 230],
        "Clennett2020" : [0, 170],
        "Seton2012" : [0, 200],
        "Merdith2021" : [0, 1000],
        "Matthews2016" : [0, 410], 
        "Merdith2017" : [0, 410], 
        "Li2008" : [0, 410],
        # "Pehrsson2015" : [25], (First implement continuous rotation)
        "TorsvikCocks2017" : [0, 410],
        "Young2019" : [0, 410], 
        "Scotese2008" : [0, 410],      
        "Golonka2007" : [0, 410],
        "Clennett2020_M2019" : [0, 170],
        "Clennett2020_S2013" : [0, 170],
        "Scotese2016" : [0,410],
        "Shephard2013" : [0,200],
        "Muller2008" : [0,141], #GPlates static polygons reconstruct to this time
        "Muller2022" : [0,1000],
        "Cao2023" : [0,1800],
        "Cao2023_Opt" : [0,1800],

    }  
    return database
def plate_reconstruction_files(self)
Expand source code
def plate_reconstruction_files(self):

    database = {

        "Cao2020" : ["https://zenodo.org/record/3854549/files/1000Myr_synthetic_tectonic_reconstructions.zip"],
        "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_PlateMotionModel/Muller_etal_2019_PlateMotionModel_v2.0_Tectonics_Updated.zip"], 
        "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Supplement/Muller_etal_2016_AREPS_Supplement_v1.17.zip"],
        "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific.zip"],
        "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR.zip"],
        #"Merdith2021" : ["https://zenodo.org/record/4485738/files/SM2_4485738_V2.zip"],
        "Merdith2021" : ["https://earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2021_ESR/SM2-Merdith_et_al_1_Ga_reconstruction_v1.1.zip"],
        "Matthews2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Matthews_etal_2016_Global_Plate_Model_GPC.zip"], 
        "Merdith2017" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2017_GR.zip"], 
        "Li2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Li_etal_2008_RodiniaModel.zip"],
        "Pehrsson2015" : ["https://www.geolsoc.org.uk/~/media/Files/GSL/shared/Sup_pubs/2015/18822_7.zip"],
        "TorsvikCocks2017" : ["http://www.earthdynamics.org/earthhistory/bookdata/CEED6.zip"],
        "Young2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Young_etal_2018_GeoscienceFrontiers/Young_etal_2018_GeoscienceFrontiers_GPlatesPlateMotionModel.zip"], 
        "Scotese2008" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],      
        "Golonka2007" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
        "Clennett2020_M2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_M2019.zip"],
        "Clennett2020_S2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_S2013.zip"],
        "Muller2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller2008/Global_Model_Rigid_Internal_Release_2010.zip"],
        "Scotese2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese2016/PALEOMAP_GlobalPlateModel.zip"],
        "Shephard2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Shephard_etal_2013_ESR.zip"],
        "Muller2022" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2022_SE/Muller_etal_2022_SE_1Ga_Opt_PlateMotionModel_v1.1.zip"],
        "Cao2023" :["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023/1.8Ga_model_submit.zip"],
        "Cao2023_Opt" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023_Opt/Cao1800Opt.zip"],

    }

    return database
def rotation_strings_to_ignore(self)
Expand source code
def rotation_strings_to_ignore(self):

    strings = [
        "OLD",
        "__MACOSX",
        "DO_NOT",
        "Blocks_crossing_Poles"
    ]    
    return strings
def rotation_strings_to_include(self)
Expand source code
def rotation_strings_to_include(self):

    strings = [

        "Muller2022 1000_0_rotfile_Merdith_et_al_optimised.rot", # For Muller et al. 2022
    ]
    return strings
def static_polygon_strings_to_ignore(self)
Expand source code
def static_polygon_strings_to_ignore(self):

    strings = [

        "DO_NOT",
        "OLD",
        "__MACOSX",
        "Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific/StaticGeometries/StaticPolygons/Global_EarthByte_GPlates_PresentDay_StaticPlatePolygons.shp" # Clennett 2020

    ]
    return strings
def static_polygon_strings_to_include(self)
Expand source code
def static_polygon_strings_to_include(self):

    strings = [
        "StaticPolygon",
        "StaticPolygons",
        "Static_Polygon",
        "StaticPlatePolygons_",
        "RodiniaBlocks_WithPlateIDColumnAndIDs",
        # "PlatePolygons.shp",
        "CEED6_TERRANES.shp",
        "CEED6_MICROCONTINENTS.shp",
        "CEED6_LAND.gpml",
        "Scotese_2008_PresentDay_ContinentalPolygons", # Scotese 2008
        "Golonka_2007_PresentDay_ContinentalPolygons.shp", # Golonka 2007
        "PALEOMAP_PlatePolygons.gpml", # For Scotese 2016
    ]
    return strings
def topology_geometries(self)
Expand source code
def topology_geometries(self):

    database = {

        "Cao2020" : ["https://zenodo.org/record/3854549/files/1000Myr_synthetic_tectonic_reconstructions.zip"],
        "Muller2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/Muller_etal_2019_PlateMotionModel/Muller_etal_2019_PlateMotionModel_v2.0_Tectonics_Updated.zip"], 
        "Muller2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2016_AREPS/Muller_etal_2016_AREPS_Supplement/Muller_etal_2016_AREPS_Supplement_v1.17.zip"],
        "Clennett2020" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Global_Model_WD_Internal_Release_2019_v2_Clennett_NE_Pacific.zip"],
        "Seton2012" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Seton_etal_2012_ESR.zip"],
        #"Merdith2021" : ["https://zenodo.org/record/4485738/files/SM2_4485738_V2.zip"],
        "Merdith2021" : ["https://earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2021_ESR/SM2-Merdith_et_al_1_Ga_reconstruction_v1.1.zip"],
        "Matthews2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Matthews_etal_2016_Global_Plate_Model_GPC.zip"], 
        "Merdith2017" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Merdith_etal_2017_GR.zip"],  
        "Li2008" : [None],
        "Pehrsson2015" : ["https://www.geolsoc.org.uk/~/media/Files/GSL/shared/Sup_pubs/2015/18822_7.zip"],
        "TorsvikCocks2017" : ["http://www.earthdynamics.org/earthhistory/bookdata/CEED6.zip"],
        "Young2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Young_etal_2018_GeoscienceFrontiers/Young_etal_2018_GeoscienceFrontiers_GPlatesPlateMotionModel.zip"],
        "Scotese2008" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
        "Golonka2007" : ["https://static.cambridge.org/content/id/urn:cambridge.org:id:article:S0016756818000110/resource/name/S0016756818000110sup001.zip"],
        "Clennett2020_M2019" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_M2019.zip"],
        "Clennett2020_S2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Clennett_etal_2020_G3/Clennett_etal_2020_S2013.zip"],
        "Muller2008" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller2008/Global_Model_Rigid_Internal_Release_2010.zip"],
        "Scotese2016" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese2016/PALEOMAP_GlobalPlateModel.zip"],
        "Shephard2013" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Shephard_etal_2013_ESR.zip"],
        "Muller2022" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2022_SE/Muller_etal_2022_SE_1Ga_Opt_PlateMotionModel_v1.1.zip"],
        "Cao2023" :["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023/1.8Ga_model_submit.zip"],
        "Cao2023_Opt" : ["https://www.earthbyte.org/webdav/ftp/Data_Collections/Cao_etal_2023_Opt/Cao1800Opt.zip"],

    }
    return database
class DataServer (file_collection, verbose=True)

Uses Pooch to download plate reconstruction feature data from plate models and other studies that are stored on web servers (e.g. EarthByte's webDAV server).

If the DataServer object and its methods are called for the first time, i.e. by:

# string identifier to access the Muller et al. 2019 model
gDownload = gplately.download.DataServer("Muller2019")

all requested files are downloaded into the user's 'gplately' cache folder only once. If the same object and method(s) are re-run, the files will be re-accessed from the cache provided they have not been moved or deleted.

Currently, DataServer supports a number of plate reconstruction models.


Model name string Identifier Rot. files Topology features Static polygons Coast-lines Cont-inents COB- Age grids SR grids
Muller2019
Muller2016
Merdith2021
Cao2020
Clennett2020
Seton2012
Matthews2016
Merdith2017
Li2008
Pehrsson2015
TorsvikCocks2017
Young2019
Scotese2008
Clennett2020_M19
Clennett2020_S13
Muller2008
Muller2022
Scotese2016
Shephard2013

To call the object, supply a model name string Identifier, file_collection, from one of the following models:

  • Müller et al. 2019:

    file_collection = Muller2019

    Information

    • Downloadable files: a rotation_model, topology_features, static_polygons, coastlines, continents, COBs, and seafloor age_grids from 0 to 250 Ma.
    • Maximum reconstruction time: 250 Ma

    Citations

    Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., and Gurnis, M. (2019), A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, vol. 38, https://doi.org/10.1029/2018TC005462.

  • Müller et al. 2016:

    file_collection = Muller2016

    Information

    • Downloadable files: a rotation_model, topology_features, static_polygons, coastlines, and seafloor age_grids from 0-230 Ma.
    • Maximum reconstruction time: 230 Ma

    Citations

    • Müller R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., Cannon, J., InPress. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup, Annual Review of Earth and Planetary Sciences, Vol 44, 107-138. DOI: 10.1146/annurev-earth-060115-012211.
  • Merdith et al. 2021:

    file_collection = Merdith2021

    Information

    • Downloadable files: a rotation_model, topology_features, static_polygons, coastlines and continents.
    • Maximum reconstruction time: 1 Ga (however, PlotTopologies correctly visualises up to 410 Ma)

    Citations:

    • Merdith et al. (in review), 'A continuous, kinematic full-plate motion model from 1 Ga to present'.
    • Andrew Merdith. (2020). Plate model for 'Extending Full-Plate Tectonic Models into Deep Time: Linking the Neoproterozoic and the Phanerozoic ' (1.1b) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4485738
  • Cao et al. 2020:

    file_collection = Cao2020

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, coastlines and continents.
    • Maximum reconstruction time: 1 Ga

    Citations

    • Toy Billion-year reconstructions from Cao et al (2020). Coupled Evolution of Plate Tectonics and Basal Mantle Structure Tectonics, doi: 10.1029/2020GC009244
  • Clennett et al. 2020 :

    file_collection = Clennett2020

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, coastlines and continents
    • Maximum reconstruction time: 170 Ma

    Citations

    • Mather, B., Müller, R.D.,; Alfonso, C.P., Seton, M., 2021, Kimberlite eruption driven by slab flux and subduction angle. DOI: 10.5281/zenodo.5769002
  • Seton et al. 2012:

    file_collection = Seton2012

    Information

    • Downloadable files: rotation_model, topology_features, coastlines, COBs, and paleo-age grids (0-200 Ma)
    • Maximum reconstruction time: 200 Ma

    Citations

    • M. Seton, R.D. Müller, S. Zahirovic, C. Gaina, T.H. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. Maus, M. Chandler, Global continental and ocean basin reconstructions since 200 Ma, Earth-Science Reviews, Volume 113, Issues 3-4, July 2012, Pages 212-270, ISSN 0012-8252, 10.1016/j.earscirev.2012.03.002.
  • Matthews et al. 2016:

    file_collection = Matthews2016

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, coastlines, and continents
    • Maximum reconstruction time(s): 410-250 Ma, 250-0 Ma

    Citations

    • Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, 146, 226-250. DOI: 10.1016/j.gloplacha.2016.10.002
  • Merdith et al. 2017:

    file_collection = Merdith2017

    Information

    • Downloadable files: rotation_files and topology_features
    • Maximum reconstruction time: 410 Ma

    Citations

    • Merdith, A., Collins, A., Williams, S., Pisarevskiy, S., Foden, J., Archibald, D. and Blades, M. et al. 2016. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research. 50: pp. 84-134. DOI: 10.1016/j.gr.2017.04.001
  • Li et al. 2008:

    file_collection = Li2008

    Information

    • Downloadable files: rotation_model and static_polygons
    • Maximum reconstruction time: 410 Ma

    Citations

    • Rodinia reconstruction from Li et al (2008), Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research. 160. 179-210. DOI: 10.1016/j.precamres.2007.04.021.
  • Pehrsson et al. 2015:

    file_collection = Pehrsson2015

    Information

    • Downloadable files: rotation_model and static_polygons
    • Maximum reconstruction time: N/A

    Citations

    • Pehrsson, S.J., Eglington, B.M., Evans, D.A.D., Huston, D., and Reddy, S.M., (2015), Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geological Society, London, Special Publications, 424, 83-94. DOI: https://doi.org/10.1144/SP424.5
  • Torsvik and Cocks et al. 2017:

    file_collection = TorsvikCocks2017

    Information

    • Downloadable files: rotation_model, and coastlines
    • Maximum reconstruction time: 410 Ma

    Citations

    • Torsvik, T., & Cocks, L. (2016). Earth History and Palaeogeography. Cambridge: Cambridge University Press. doi:10.1017/9781316225523
  • Young et al. 2019:

    file_collection = Young2019

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, coastlines and continents.
    • Maximum reconstruction time: 410-250 Ma, 250-0 Ma

    Citations

    • Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., Müller, R.D., (2019), Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era, Geoscience Frontiers, Volume 10, Issue 3, pp. 989-1013, ISSN 1674-9871, DOI: https://doi.org/10.1016/j.gsf.2018.05.011.
  • Scotese et al. 2008:

    file_collection = Scotese2008

    Information

    • Downloadable files: rotation_model, static_polygons, and continents
    • Maximum reconstruction time:

    Citations

    • Scotese, C.R. 2008. The PALEOMAP Project PaleoAtlas for ArcGIS, Volume 2, Cretaceous paleogeographic and plate tectonic reconstructions. PALEOMAP Project, Arlington, Texas.
  • Golonka et al. 2007:

    file_collection = Golonka2007

    Information

    • Downloadable files: rotation_model, static_polygons, and continents
    • Maximum reconstruction time: 410 Ma

    Citations

    • Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology 244(1–4), 297–307.
  • Clennett et al. 2020 (based on Müller et al. 2019):

    file_collection = Clennett2020_M2019

    Information

    • Downloadable files: rotation_model, topology_features, continents and coastlines
    • Maximum reconstruction time: 170 Ma

    Citations

    • Clennett, E.J., Sigloch, K., Mihalynuk, M.G., Seton, M., Henderson, M.A., Hosseini, K., Mohammadzaheri, A., Johnston, S.T., Müller, R.D., (2020), A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, Geosystems, 21, e2020GC009117. DOI: https://doi.org/10.1029/2020GC009117
  • Clennett et al. 2020 (rigid topological model based on Shephard et al, 2013):

    file_collection = Clennett2020_S2013

    Information

    • Downloadable files: rotation_model, topology_features, continents and coastlines
    • Maximum reconstruction time: 170

    Citations

    • Clennett, E.J., Sigloch, K., Mihalynuk, M.G., Seton, M., Henderson, M.A., Hosseini, K., Mohammadzaheri, A., Johnston, S.T., Müller, R.D., (2020), A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, Geosystems, 21, e2020GC009117. DOI: https://doi.org/10.1029/2020GC009117
  • Müller et al. 2008:

    file_collection = Muller2008

    Information

    • Downloadable files: rotation_model, static_polygons
    • Maximum reconstruction time: 141 Ma

    Citations

    • Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4).
  • Müller et al. 2022:

    file_collection = Muller2022

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, continents, coastlines and COBs
    • Maximum reconstruction time: 1000 Ma

    Citations

    • Müller, R. D., Flament, N., Cannon, J., Tetley, M. G., Williams, S. E., Cao, X., Bodur, Ö. F., Zahirovic, S., and Merdith, A.: A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution, Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, 2022.
  • Scotese 2016:

    file_collection = Scotese2016

    Information

    • Downloadable files: rotation_model, static_polygons, coastlines
    • Maximum reconstruction time: 410 Ma

    Citations

  • Shephard et al. 2013:

    file_collection = Shephard2013

    Information

    • Downloadable files: rotation_model, topology_features, static_polygons, coastlines
    • Maximum reconstruction time: 200 Ma

    Citations

    • Shephard, G.E., Müller, R.D., and Seton, M., 2013. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, Volume 124 p.148-183. doi:10.1016/j.earscirev.2013.05.012 (http://www.sciencedirect.com/science/article/pii/S0012825213001104)

    • M. Seton, R.D. Müller, S. Zahirovic, C. Gaina, T.H. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. Maus, M. Chandler, Global continental and ocean basin reconstructions since 200 Ma, Earth-Science Reviews, Volume 113, p.212-270 doi:10.1016/j.earscirev.2012.03.002. (http://www.sciencedirect.com/science/article/pii/S0012825212000311)

    Parameters

    file_collection : str name of file collection to use

    verbose : bool, default True Toggle print messages regarding server/internet connection status, file availability etc.

Expand source code
class DataServer(object):
    """Uses [Pooch](https://www.fatiando.org/pooch/latest/) to download plate reconstruction 
    feature data from plate models and other studies that are stored on web servers 
    (e.g. EarthByte's [webDAV server](https://www.earthbyte.org/webdav/ftp/Data_Collections/)). 
    
    If the `DataServer` object and its methods are called for the first time, i.e. by:

        # string identifier to access the Muller et al. 2019 model
        gDownload = gplately.download.DataServer("Muller2019")

    all requested files are downloaded into the user's 'gplately' cache folder only _once_. If the same
    object and method(s) are re-run, the files will be re-accessed from the cache provided they have not been 
    moved or deleted. 

    Currently, `DataServer` supports a number of plate reconstruction models. 

    ------------------

    | **Model name string Identifier** | **Rot. files** | **Topology features** | **Static polygons** | **Coast-lines** | **Cont-inents** | **COB-** | **Age grids** | **SR grids** |
    |:--------------------------------:|:--------------:|:---------------------:|:-------------------:|:---------------:|:---------------:|:--------:|:-------------:|:------------:|
    |            Muller2019            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ✅    |       ✅       |       ❌      |
    |            Muller2016            |        ✅       |           ✅           |          ✅          |        ✅        |        ❌        |     ❌    |       ✅       |       ❌      |
    |            Merdith2021           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |              Cao2020             |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |           Clennett2020           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ✅       |       ✅      |
    |             Seton2012            |        ✅       |           ✅           |          ❌          |        ✅        |        ❌        |     ✅    |       ✅       |       ❌      |
    |           Matthews2016           |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |            Merdith2017           |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
    |              Li2008              |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
    |           Pehrsson2015           |        ✅       |           ✅           |          ❌          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
    |         TorsvikCocks2017         |        ✅       |           ❌           |          ❌          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |
    |             Young2019            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |            Scotese2008           |        ✅       |           ✅           |          ❌          |        ❌        |        ✅        |     ❌    |       ❌       |       ❌      |
    |         Clennett2020_M19         |        ✅       |           ✅           |          ❌          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |         Clennett2020_S13         |        ✅       |           ✅           |          ❌          |        ✅        |        ✅        |     ❌    |       ❌       |       ❌      |
    |            Muller2008            |        ✅       |           ❌           |          ✅          |        ❌        |        ❌        |     ❌    |       ❌       |       ❌      |
    |            Muller2022            |        ✅       |           ✅           |          ✅          |        ✅        |        ✅        |     ✅    |       ❌       |       ❌      |
    |            Scotese2016           |        ✅       |           ❌           |          ✅          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |
    |           Shephard2013           |        ✅       |           ✅           |          ✅          |        ✅        |        ❌        |     ❌    |       ❌       |       ❌      |

    ------------------

    To call the object, supply a model name string Identifier, `file_collection`, from one of the following models:

    * __[Müller et al. 2019](https://www.earthbyte.org/muller-et-al-2019-deforming-plate-reconstruction-and-seafloor-age-grids-tectonics/):__ 

        file_collection = `Muller2019`
    
        Information
        -----------
        * Downloadable files: a `rotation_model`, `topology_features`, `static_polygons`, `coastlines`, `continents`, `COBs`, and
        seafloor `age_grids` from 0 to 250 Ma. 
        * Maximum reconstruction time: 250 Ma

        Citations
        ---------
        Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., 
        Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., 
        Yang, T., Leonard, J., and Gurnis, M. (2019), A global plate model including 
        lithospheric deformation along major rifts and orogens since the Triassic. 
        Tectonics, vol. 38, https://doi.org/10.1029/2018TC005462.
            

    * __Müller et al. 2016__:

        file_collection = `Muller2016`

        Information
        -----------
        * Downloadable files: a `rotation_model`, `topology_features`, `static_polygons`, `coastlines`, and
        seafloor `age_grids` from 0-230 Ma. 
        * Maximum reconstruction time: 230 Ma

        Citations
        ---------
        * Müller R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J.,
        Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., 
        Bower, D.J., Cannon, J., InPress. Ocean basin evolution and global-scale plate 
        reorganization events since Pangea breakup, Annual Review of Earth and Planetary 
        Sciences, Vol 44, 107-138. DOI: 10.1146/annurev-earth-060115-012211.


    * __[Merdith et al. 2021](https://zenodo.org/record/4485738#.Yhrm8hNBzA0)__: 

        file_collection = `Merdith2021`

        Information
        -----------
        * Downloadable files: a `rotation_model`, `topology_features`, `static_polygons`, `coastlines`
        and `continents`.
        * Maximum reconstruction time: 1 Ga (however, `PlotTopologies` correctly visualises up to 410 Ma) 

        Citations: 
        ----------
        * Merdith et al. (in review), 'A continuous, kinematic full-plate motion model
        from 1 Ga to present'. 
        * Andrew Merdith. (2020). Plate model for 'Extending Full-Plate Tectonic Models 
        into Deep Time: Linking the Neoproterozoic and the Phanerozoic ' (1.1b) [Data set]. 
        Zenodo. https://doi.org/10.5281/zenodo.4485738


    * __Cao et al. 2020__: 

        file_collection = `Cao2020`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `static_polygons`, `coastlines`
        and `continents`.
        * Maximum reconstruction time: 1 Ga

        Citations
        ---------
        * Toy Billion-year reconstructions from Cao et al (2020). 
        Coupled Evolution of Plate Tectonics and Basal Mantle Structure Tectonics, 
        doi: 10.1029/2020GC009244


    - __Clennett et al. 2020__ : 

        file_collection = `Clennett2020`
        
        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `static_polygons`, `coastlines`
        and `continents`
        * Maximum reconstruction time: 170 Ma

        Citations
        ---------
        * Mather, B., Müller, R.D.,; Alfonso, C.P., Seton, M., 2021, Kimberlite eruption 
        driven by slab flux and subduction angle. DOI: 10.5281/zenodo.5769002


    - __Seton et al. 2012__:

        file_collection = `Seton2012`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `coastlines`,
        `COBs`, and paleo-age grids (0-200 Ma)
        * Maximum reconstruction time: 200 Ma

        Citations
        ---------
        * M. Seton, R.D. Müller, S. Zahirovic, C. Gaina, T.H. Torsvik, G. Shephard, A. Talsma, 
        M. Gurnis, M. Turner, S. Maus, M. Chandler, Global continental and ocean basin reconstructions 
        since 200 Ma, Earth-Science Reviews, Volume 113, Issues 3-4, July 2012, Pages 212-270, 
        ISSN 0012-8252, 10.1016/j.earscirev.2012.03.002.


    - __Matthews et al. 2016__: 

        file_collection = `Matthews2016`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `static_polygons`, `coastlines`,
        and `continents`
        * Maximum reconstruction time(s): 410-250 Ma, 250-0 Ma

        Citations
        ---------
        * Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M.,
        and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the 
        late Paleozoic, Global and Planetary Change, 146, 226-250. 
        DOI: 10.1016/j.gloplacha.2016.10.002


    - __Merdith et al. 2017__: 

        file_collection = `Merdith2017`

        Information
        -----------
        * Downloadable files: `rotation_files` and `topology_features`
        * Maximum reconstruction time: 410 Ma

        Citations
        ---------
        * Merdith, A., Collins, A., Williams, S., Pisarevskiy, S., Foden, J., Archibald, D. 
        and Blades, M. et al. 2016. A full-plate global reconstruction of the Neoproterozoic. 
        Gondwana Research. 50: pp. 84-134. DOI: 10.1016/j.gr.2017.04.001


    - __Li et al. 2008__: 

        file_collection = `Li2008`

        Information
        -----------
        * Downloadable files: `rotation_model` and `static_polygons`
        * Maximum reconstruction time: 410 Ma

        Citations
        ---------
        * Rodinia reconstruction from Li et al (2008), Assembly, configuration, and break-up 
        history of Rodinia: A synthesis. Precambrian Research. 160. 179-210. 
        DOI: 10.1016/j.precamres.2007.04.021.


    - __Pehrsson et al. 2015__: 

        file_collection = `Pehrsson2015`

        Information
        -----------
        * Downloadable files: `rotation_model` and `static_polygons`
        * Maximum reconstruction time: N/A

        Citations
        ---------
        * Pehrsson, S.J., Eglington, B.M., Evans, D.A.D., Huston, D., and Reddy, S.M., (2015),
        Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geological 
        Society, London, Special Publications, 424, 83-94. DOI: https://doi.org/10.1144/SP424.5


    - __Torsvik and Cocks et al. 2017__: 

        file_collection = `TorsvikCocks2017`

        Information
        -----------
        * Downloadable files: `rotation_model`, and `coastlines`
        * Maximum reconstruction time: 410 Ma

        Citations
        ---------
        * Torsvik, T., & Cocks, L. (2016). Earth History and Palaeogeography. Cambridge: 
        Cambridge University Press. doi:10.1017/9781316225523


    - __Young et al. 2019__: 

        file_collection = `Young2019`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `static_polygons`, `coastlines`
        and `continents`.
        * Maximum reconstruction time: 410-250 Ma, 250-0 Ma
        
        Citations
        ---------
        * Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S.,
        Müller, R.D., (2019), Global kinematics of tectonic plates and subduction zones since the late 
        Paleozoic Era, Geoscience Frontiers, Volume 10, Issue 3, pp. 989-1013, ISSN 1674-9871,
        DOI: https://doi.org/10.1016/j.gsf.2018.05.011.


    - __Scotese et al. 2008__: 

        file_collection = `Scotese2008`

        Information
        -----------
        * Downloadable files: `rotation_model`, `static_polygons`, and `continents`
        * Maximum reconstruction time: 
        
        Citations
        ---------
        * Scotese, C.R. 2008. The PALEOMAP Project PaleoAtlas for ArcGIS, Volume 2, Cretaceous 
        paleogeographic and plate tectonic reconstructions. PALEOMAP Project, Arlington, Texas.


    - __Golonka et al. 2007__: 

        file_collection = `Golonka2007`

        Information
        -----------
        * Downloadable files: `rotation_model`, `static_polygons`, and `continents`
        * Maximum reconstruction time: 410 Ma
        
        Citations
        ---------
        * Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. 
        Palaeogeography, Palaeoclimatology, Palaeoecology 244(1–4), 297–307.


    - __Clennett et al. 2020 (based on Müller et al. 2019)__: 

        file_collection = `Clennett2020_M2019`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `continents` and `coastlines`
        * Maximum reconstruction time: 170 Ma
        
        Citations
        ---------
        * Clennett, E.J., Sigloch, K., Mihalynuk, M.G., Seton, M., Henderson, M.A., Hosseini, K.,
        Mohammadzaheri, A., Johnston, S.T., Müller, R.D., (2020), A Quantitative Tomotectonic Plate 
        Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, 
        Geosystems, 21, e2020GC009117. DOI: https://doi.org/10.1029/2020GC009117


    - __Clennett et al. 2020 (rigid topological model based on Shephard et al, 2013)__: 

        file_collection = `Clennett2020_S2013`

        Information
        -----------
        * Downloadable files: `rotation_model`, `topology_features`, `continents` and `coastlines`
        * Maximum reconstruction time: 170
        
        Citations
        ---------
        * Clennett, E.J., Sigloch, K., Mihalynuk, M.G., Seton, M., Henderson, M.A., Hosseini, K.,
        Mohammadzaheri, A., Johnston, S.T., Müller, R.D., (2020), A Quantitative Tomotectonic Plate 
        Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, 
        Geosystems, 21, e2020GC009117. DOI: https://doi.org/10.1029/2020GC009117


    - __Müller et al. 2008__:

        file_collection = `Muller2008`

        Information
        -----------
        * Downloadable files:  `rotation_model`, `static_polygons`
        * Maximum reconstruction time: 141 Ma

        Citations
        ---------
        * Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and 
        spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4).



    - __Müller et al. 2022__:

        file_collection = `Muller2022`

        Information
        -----------
        * Downloadable files:  `rotation_model`, `topology_features`, `static_polygons`, `continents`, `coastlines` and `COBs`
        * Maximum reconstruction time: 1000 Ma

        Citations
        ---------
        *  Müller, R. D., Flament, N., Cannon, J., Tetley, M. G., Williams, S. E., Cao, X., Bodur, Ö. F., Zahirovic, S., 
        and Merdith, A.: A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for 
        supercontinent cycles and plate–mantle system evolution, Solid Earth, 13, 1127–1159, 
        https://doi.org/10.5194/se-13-1127-2022, 2022.



    - __Scotese 2016__:

        file_collection = `Scotese2016`

        Information
        -----------
        * Downloadable files:  `rotation_model`, `static_polygons`, `coastlines` 
        * Maximum reconstruction time: 410 Ma

        Citations
        ---------
        * Scotese, C.R., 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData 
        Plotter Program, PALEOMAP Project, 
        http://www.earthbyte.org/paleomappaleoatlas-for-gplates/


    - __Shephard et al. 2013__:

        file_collection = `Shephard2013`

        Information
        -----------
        * Downloadable files:  `rotation_model`, `topology_features`, `static_polygons`, `coastlines`
        * Maximum reconstruction time: 200 Ma

        Citations
        ---------
        * Shephard, G.E., Müller, R.D., and Seton, M., 2013. The tectonic evolution of the Arctic since 
        Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. 
        Earth-Science Reviews, Volume 124 p.148-183. doi:10.1016/j.earscirev.2013.05.012 
        (http://www.sciencedirect.com/science/article/pii/S0012825213001104)

        * M. Seton, R.D. Müller, S. Zahirovic, C. Gaina, T.H. Torsvik, G. Shephard, A. Talsma, M. Gurnis, 
        M. Turner, S. Maus, M. Chandler, Global continental and ocean basin reconstructions since 200 Ma, 
        Earth-Science Reviews, Volume 113, p.212-270 doi:10.1016/j.earscirev.2012.03.002.
        (http://www.sciencedirect.com/science/article/pii/S0012825212000311)



        Parameters
        ----------
        file_collection : str
            name of file collection to use

        verbose : bool, default True
            Toggle print messages regarding server/internet connection status, file availability etc.

    """
    def __init__(self, file_collection, verbose=True):

        self.file_collection = file_collection.capitalize()
        self.data_collection = DataCollection(self.file_collection)

        if str(type(verbose)) == "<class 'bool'>":
            self.verbose = verbose
        else:
            raise ValueError("The verbose toggle must be of Boolean type, not {}".format(type(verbose)))


    def get_plate_reconstruction_files(self):
        """Downloads and constructs a `rotation model`, a set of `topology_features` and
        and a set of `static_polygons` needed to call the `PlateReconstruction` object.

        Returns
        -------
        rotation_model : instance of <pygplates.RotationModel>
            A rotation model to query equivalent and/or relative topological plate rotations
            from a time in the past relative to another time in the past or to present day.
        topology_features : instance of <pygplates.FeatureCollection>
            Point, polyline and/or polygon feature data that are reconstructable through 
            geological time.
        static_polygons : instance of <pygplates.FeatureCollection>
            Present-day polygons whose shapes do not change through geological time. They are
            used to cookie-cut dynamic polygons into identifiable topological plates (assigned 
            an ID) according to their present-day locations.

        Notes
        -----
        This method accesses the plate reconstruction model ascribed to the `file_collection` string passed 
        into the `DataServer` object. For example, if the object was called with `"Muller2019"`:

            gDownload = gplately.download.DataServer("Muller2019")
            rotation_model, topology_features, static_polygons = gDownload.get_plate_reconstruction_files()

        the method will download a `rotation_model`, `topology_features` and `static_polygons` from the 
        Müller et al. (2019) plate reconstruction model. Once the reconstruction objects are returned, 
        they can be passed into:

            model = gplately.reconstruction.PlateReconstruction(rotation_model, topology_features, static_polygons)

        * Note: If the requested plate model does not have a certain file(s), a message will be printed 
        to alert the user. For example, using `get_plate_reconstruction_files()`
        for the Torsvik and Cocks (2017) plate reconstruction model yields the printed message:

                No topology features in TorsvikCocks2017. No FeatureCollection created - unable to 
                plot trenches, ridges and transforms.
                No continent-ocean boundaries in TorsvikCocks2017.

        """

        verbose = self.verbose

        rotation_filenames = []
        rotation_model = []
        topology_filenames = []
        topology_features = _FeatureCollection()
        static_polygons= _FeatureCollection()
        static_polygon_filenames = []

        # Locate all plate reconstruction files from GPlately's DataCollection
        database = DataCollection.plate_reconstruction_files(self)

        # Set to true if we find the given collection in our database
        found_collection = False
        for collection, url in database.items():

            # Only continue if the user's chosen collection exists in our database
            if self.file_collection.lower() == collection.lower():
                found_collection = True
                if len(url) == 1:
                    fnames = _collection_sorter(
                        download_from_web(url[0], verbose, model_name=self.file_collection), self.file_collection
                    )
                    rotation_filenames = _collect_file_extension(
                        _str_in_folder(
                            _str_in_filename(fnames,
                                strings_to_include=DataCollection.rotation_strings_to_include(self),
                                strings_to_ignore=DataCollection.rotation_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=True
                            ),
                        strings_to_ignore=DataCollection.rotation_strings_to_ignore(self)
                        ),
                        [".rot"]
                    )
                    #print(rotation_filenames)
                    rotation_model = _RotationModel(rotation_filenames)

                    topology_filenames = _collect_file_extension(
                        _str_in_folder(
                            _str_in_filename(fnames, 
                                strings_to_include=DataCollection.dynamic_polygon_strings_to_include(self),
                                strings_to_ignore=DataCollection.dynamic_polygon_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=False,
                            ), 
                            strings_to_ignore=DataCollection.dynamic_polygon_strings_to_ignore(self)
                        ),
                        [".gpml", ".gpmlz"]
                    )
                    #print(topology_filenames)
                    for file in topology_filenames:
                        topology_features.add(_FeatureCollection(file))

                    static_polygon_filenames = _check_gpml_or_shp(
                        _str_in_folder(
                            _str_in_filename(fnames, 
                                strings_to_include=DataCollection.static_polygon_strings_to_include(self),
                                strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=False
                            ),
                            strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self)
                        )
                    )
                    #print(static_polygon_filenames)
                    for stat in static_polygon_filenames:
                        static_polygons.add(_FeatureCollection(stat))

                else:
                    for file in url[0]:
                        rotation_filenames.append(_collect_file_extension(download_from_web(file, verbose, model_name=self.file_collection), [".rot"]))
                        rotation_model = _RotationModel(rotation_filenames)

                    for file in url[1]:
                        topology_filenames.append(_collect_file_extension(download_from_web(file, verbose, model_name=self.file_collection), [".gpml"]))
                        for file in topology_filenames:
                            topology_features.add(_FeatureCollection(file))

                    for file in url[2]:
                        static_polygon_filenames.append(
                            _check_gpml_or_shp(
                                _str_in_folder(
                                    _str_in_filename(download_from_web(url[0], verbose, model_name=self.file_collection), 
                                        strings_to_include=DataCollection.static_polygon_strings_to_include(self)
                                    ),    
                                        strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self)
                                )
                            )   
                        )
                        for stat in static_polygon_filenames:
                            static_polygons.add(_FeatureCollection(stat))
                break

        if found_collection is False:
            raise ValueError("{} is not in GPlately's DataServer.".format(self.file_collection))

        if not rotation_filenames:
            print("No .rot files in {}. No rotation model created.".format(self.file_collection))
            rotation_model = []
        if not topology_filenames:
            print("No topology features in {}. No FeatureCollection created - unable to plot trenches, ridges and transforms.".format(self.file_collection))
            topology_features = []
        if not static_polygons:
            print("No static polygons in {}.".format(self.file_collection))
            static_polygons = []

        # add identifier for setting up DownloadServer independently
        rotation_model.reconstruction_identifier = self.file_collection

        return rotation_model, topology_features, static_polygons


    def get_topology_geometries(self):
        """Uses Pooch to download coastline, continent and COB (continent-ocean boundary)
        Shapely geometries from the requested plate model. These are needed to call the `PlotTopologies`
        object and visualise topological plates through time.

        Parameters
        ----------
        verbose : bool, default True
            Toggle print messages regarding server/internet connection status, file availability etc.

        Returns
        -------
        coastlines : instance of <pygplates.FeatureCollection>
            Present-day global coastline Shapely polylines cookie-cut using static polygons. Ready for
            reconstruction to a particular geological time and for plotting.

        continents : instance of <pygplates.FeatureCollection>
            Cookie-cutting Shapely polygons for non-oceanic regions (continents, inta-oceanic arcs, etc.)
            ready for reconstruction to a particular geological time and for plotting.

        COBs : instance of <pygplates.FeatureCollection>
            Shapely polylines resolved from .shp and/or .gpml topology files that represent the 
            locations of the boundaries between oceanic and continental crust.
            Ready for reconstruction to a particular geological time and for plotting.

        Notes
        -----
        This method accesses the plate reconstruction model ascribed to the `file_collection` 
        string passed into the `DataServer` object. For example, if the object was called with
        `"Muller2019"`:

            gDownload = gplately.download.DataServer("Muller2019")
            coastlines, continents, COBs = gDownload.get_topology_geometries()

        the method will attempt to download `coastlines`, `continents` and `COBs` from the Müller
        et al. (2019) plate reconstruction model. If found, these files are returned as individual 
        pyGPlates Feature Collections. They can be passed into:

            gPlot = gplately.plot.PlotTopologies(gplately.reconstruction.PlateReconstruction, time, continents, coastlines, COBs)

        to reconstruct features to a certain geological time. The `PlotTopologies`
        object provides simple methods to plot these geometries along with trenches, ridges and 
        transforms (see documentation for more info). Note that the `PlateReconstruction` object 
        is a parameter.

        * Note: If the requested plate model does not have a certain geometry, a
        message will be printed to alert the user. For example, if `get_topology_geometries()` 
        is used with the `"Matthews2016"` plate model, the workflow will print the following 
        message: 

                No continent-ocean boundaries in Matthews2016.
        """

        verbose = self.verbose

        # Locate all topology geometries from GPlately's DataCollection
        database = DataCollection.topology_geometries(self)

        coastlines = []
        continents = []
        COBs = []
        
        # Find the requested plate model data collection
        found_collection = False
        for collection, url in database.items():

            if self.file_collection.lower() == collection.lower():
                found_collection = True

                if len(url) == 1:
                    # Some plate models do not have reconstructable geometries i.e. Li et al. 2008
                    if url[0] is None:
                        break
                    else:
                        fnames = _collection_sorter(
                            download_from_web(url[0], verbose, model_name=self.file_collection), self.file_collection
                        )
                        coastlines = _check_gpml_or_shp(
                            _str_in_folder(
                                _str_in_filename(
                                    fnames,
                                    strings_to_include=DataCollection.coastline_strings_to_include(self),
                                    strings_to_ignore=DataCollection.coastline_strings_to_ignore(self),
                                    file_collection=self.file_collection,
                                    file_collection_sensitive=False
                                ), 
                                strings_to_ignore=DataCollection.coastline_strings_to_ignore(self)
                            )
                        )
                        continents = _check_gpml_or_shp(
                            _str_in_folder(
                                _str_in_filename(
                                    fnames, 
                                    strings_to_include=DataCollection.continent_strings_to_include(self),
                                    strings_to_ignore=DataCollection.continent_strings_to_ignore(self),
                                    file_collection=self.file_collection,
                                    file_collection_sensitive=False
                                ), 
                                strings_to_ignore=DataCollection.continent_strings_to_ignore(self)
                            )
                        )
                        COBs = _check_gpml_or_shp(
                            _str_in_folder(
                                _str_in_filename(
                                    fnames,
                                    strings_to_include=DataCollection.COB_strings_to_include(self),
                                    strings_to_ignore=DataCollection.COB_strings_to_ignore(self),
                                    file_collection=self.file_collection,
                                    file_collection_sensitive=False
                                ), 
                                strings_to_ignore=DataCollection.COB_strings_to_ignore(self)
                            )
                        )
                else:
                    for file in url[0]:
                        if url[0] is not None:
                            coastlines.append(_str_in_filename(
                                download_from_web(file, verbose, model_name=self.file_collection), 
                                strings_to_include=["coastline"])
                            )
                            coastlines = _check_gpml_or_shp(coastlines)
                        else:
                            coastlines = []

                    for file in url[1]:
                        if url[1] is not None:
                            continents.append(_str_in_filename(
                                download_from_web(file, verbose, model_name=self.file_collection), 
                                strings_to_include=["continent"])
                            )
                            continents = _check_gpml_or_shp(continents)
                        else:
                            continents = []

                    for file in url[2]:
                        if url[2] is not None:
                            COBs.append(_str_in_filename(
                                download_from_web(file, verbose, model_name=self.file_collection), 
                                strings_to_include=["cob"])
                            )
                            COBs = _check_gpml_or_shp(COBs)
                        else:
                            COBs = []
                break

        if found_collection is False:
            raise ValueError("{} is not in GPlately's DataServer.".format(self.file_collection))

        if not coastlines:
            print("No coastlines in {}.".format(self.file_collection))
            coastlines_featurecollection = []
        else:
            #print(coastlines)
            coastlines_featurecollection = _FeatureCollection()
            for coastline in coastlines:
                coastlines_featurecollection.add(_FeatureCollection(coastline))
        
        if not continents:
            print("No continents in {}.".format(self.file_collection))
            continents_featurecollection = []
        else:
            #print(continents)
            continents_featurecollection = _FeatureCollection()
            for continent in continents:
                continents_featurecollection.add(_FeatureCollection(continent))
        
        if not COBs:
            print("No continent-ocean boundaries in {}.".format(self.file_collection))
            COBs_featurecollection = []
        else:
            #print(COBs)
            COBs_featurecollection = _FeatureCollection()
            for COB in COBs:
                COBs_featurecollection.add(_FeatureCollection(COB))
        
        geometries = coastlines_featurecollection, continents_featurecollection, COBs_featurecollection
        return geometries


    def get_age_grid(self, time):
        """Downloads seafloor and paleo-age grids from the plate reconstruction model (`file_collection`)
        passed into the `DataServer` object. Stores grids in the "gplately" cache.

        Currently, `DataServer` supports the following age grids:

        * __Muller et al. 2019__

            * `file_collection` = `Muller2019`
            * Time range: 0-250 Ma
            * Seafloor age grid rasters in netCDF format.

        * __Muller et al. 2016__
            
            * `file_collection` = `Muller2016`
            * Time range: 0-240 Ma
            * Seafloor age grid rasters in netCDF format. 

        * __Seton et al. 2012__

            * `file_collection` = `Seton2012`
            * Time range: 0-200 Ma
            * Paleo-age grid rasters in netCDF format.

        
        Parameters
        ----------
        time : int, or list of int, default=None
            Request an age grid from one (an integer) or multiple reconstruction times (a
            list of integers).

        Returns
        -------
        a gplately.Raster object
            A gplately.Raster object containing the age grid. The age grid data can be extracted 
            into a numpy ndarray or MaskedArray by appending `.data` to the variable assigned to 
            `get_age_grid()`.

            For example:

                gdownload = gplately.DataServer("Muller2019")

                graster = gdownload.get_age_grid(time=100)

                graster_data = graster.data

            where `graster_data` is a numpy ndarray.

        Raises
        -----
        ValueError
            If `time` (a single integer, or a list of integers representing reconstruction
            times to extract the age grids from) is not passed.

        Notes
        -----
        The first time that `get_age_grid` is called for a specific time(s), the age grid(s) 
        will be downloaded into the GPlately cache once. Upon successive calls of `get_age_grid`
        for the same reconstruction time(s), the age grids will not be re-downloaded; rather, 
        they are re-accessed from the same cache provided the age grid(s) have not been moved or deleted. 

        Examples
        --------
        if the `DataServer` object was called with the `Muller2019` `file_collection` string:

            gDownload = gplately.download.DataServer("Muller2019")

        `get_age_grid` will download seafloor age grids from the Müller et al. (2019) plate 
        reconstruction model for the geological time(s) requested in the `time` parameter. 
        If found, these age grids are returned as masked arrays. 

        For example, to download  Müller et al. (2019) seafloor age grids for 0Ma, 1Ma and
        100 Ma:

            age_grids = gDownload.get_age_grid([0, 1, 100])
            
        """
        age_grids = []
        age_grid_links = DataCollection.netcdf4_age_grids(self, time)

        if not isinstance(time, list):
            time = [time]

        # For a single time passed that isn't in the valid time range, 
        if not age_grid_links:
            raise ValueError(
                "{} {}Ma age grids are not on GPlately's DataServer.".format(
                    self.file_collection, 
                    time[0]
                )
            )

        # For a list of times passed...
        for i, link in enumerate(age_grid_links):
            if not link:
                raise ValueError(
                    "{} {}Ma age grids are not on GPlately's DataServer.".format(
                        self.file_collection,
                        time[i]
                    )
                )
            age_grid_file = download_from_web(
                link, 
                verbose=self.verbose, 
                model_name=self.file_collection
            )
            age_grid = _gplately.grids.Raster(data=age_grid_file)
            age_grids.append(age_grid)

        # One last check to alert user if the masked array grids were not processed properly
        if not age_grids:
            raise ValueError("{} netCDF4 age grids not found.".format(self.file_collection))

        if len(age_grids) == 1:
            return age_grids[0]
        else: 
            return age_grids


    def get_spreading_rate_grid(self, time):
        """Downloads seafloor spreading rate grids from the plate reconstruction 
        model (`file_collection`) passed into the `DataServer` object. Stores 
        grids in the "gplately" cache.

        Currently, `DataServer` supports spreading rate grids from the following plate
        models:

        * __Clennett et al. 2020__

            * `file_collection` = `Clennett2020`
            * Time range: 0-250 Ma
            * Seafloor spreading rate grids in netCDF format.

        
        Parameters
        ----------
        time : int, or list of int, default=None
            Request a spreading grid from one (an integer) or multiple reconstruction 
            times (a list of integers).

        Returns
        -------
        a gplately.Raster object
            A gplately.Raster object containing the spreading rate grid. The spreading 
            rate grid data can be extracted into a numpy ndarray or MaskedArray by 
            appending `.data` to the variable assigned to `get_spreading_rate_grid()`.

            For example:

                gdownload = gplately.DataServer("Clennett2020")

                graster = gdownload.get_spreading_rate_grid(time=100)

                graster_data = graster.data

            where `graster_data` is a numpy ndarray.

        Raises
        -----
        ValueError
            If `time` (a single integer, or a list of integers representing reconstruction
            times to extract the spreading rate grids from) is not passed.

        Notes
        -----
        The first time that `get_spreading_rate_grid` is called for a specific time(s), 
        the spreading rate grid(s) will be downloaded into the GPlately cache once. 
        Upon successive calls of `get_spreading_rate_grid` for the same reconstruction 
        time(s), the grids will not be re-downloaded; rather, they are re-accessed from 
        the same cache location provided they have not been moved or deleted. 

        Examples
        --------
        if the `DataServer` object was called with the `Clennett2020` `file_collection` string:

            gDownload = gplately.download.DataServer("Clennett2020")

        `get_spreading_rate_grid` will download seafloor spreading rate grids from the 
        Clennett et al. (2020) plate reconstruction model for the geological time(s) 
        requested in the `time` parameter. When found, these spreading rate grids are 
        returned as masked arrays. 

        For example, to download Clennett et al. (2020) seafloor spreading rate grids for 
        0Ma, 1Ma and 100 Ma as MaskedArray objects:

            spreading_rate_grids = gDownload.get_spreading_rate_grid([0, 1, 100])
            
        """
        spreading_rate_grids = []
        spreading_rate_grid_links = DataCollection.netcdf4_spreading_rate_grids(self, time)

        if not isinstance(time, list):
            time = [time]

        # For a single time passed that isn't in the valid time range, 
        if not spreading_rate_grid_links:
            raise ValueError(
                "{} {}Ma spreading rate grids are not on GPlately's DataServer.".format(
                    self.file_collection,
                    time[0]
                )
            )
        # For a list of times passed...
        for i, link in enumerate(spreading_rate_grid_links):
            if not link:
                raise ValueError(
                    "{} {}Ma spreading rate grids are not on GPlately's DataServer.".format(
                        self.file_collection,
                        time[i]
                    )
                )
            spreading_rate_grid_file = download_from_web(
                link, 
                verbose=self.verbose, 
                model_name=self.file_collection
            )
            spreading_rate_grid = _gplately.grids.Raster(data=spreading_rate_grid_file)
            spreading_rate_grids.append(spreading_rate_grid)

        # One last check to alert user if the masked array grids were not processed properly
        if not spreading_rate_grids:
            raise ValueError("{} netCDF4 seafloor spreading rate grids not found.".format(self.file_collection))

        if len(spreading_rate_grids) == 1:
            return spreading_rate_grids[0]
        else: 
            return spreading_rate_grids


    def get_valid_times(self):
        """Returns a tuple of the valid plate model time range, (min_time, max_time).
        """
        all_model_valid_times = DataCollection.plate_model_valid_reconstruction_times(self)

        min_time = None
        max_time = None
        for plate_model_name, valid_times in list(all_model_valid_times.items()):
            if plate_model_name.lower() == self.file_collection.lower():
                min_time = valid_times[0]
                max_time = valid_times[1]
        if not min_time and not max_time:
            raise ValueError("Could not find the valid reconstruction time of {}".format(self.file_collection))

        return (min_time, max_time)


    def get_raster(self, raster_id_string=None):
        """Downloads assorted raster data that are not associated with the plate 
        reconstruction models supported by GPlately's `DataServer`. Stores rasters in the 
        "gplately" cache.

        Currently, `DataServer` supports the following rasters and images:

        * __[ETOPO1](https://www.ngdc.noaa.gov/mgg/global/)__: 
            * Filetypes available : TIF, netCDF (GRD)
            * `raster_id_string` = `"ETOPO1_grd"`, `"ETOPO1_tif"` (depending on the requested format)
            * A 1-arc minute global relief model combining lang topography and ocean bathymetry.
            * Citation: doi:10.7289/V5C8276M


        Parameters
        ----------
        raster_id_string : str, default=None
            A string to identify which raster to download.

        Returns
        -------
        a gplately.Raster object
            A gplately.Raster object containing the raster data. The gridded data can be extracted 
            into a numpy ndarray or MaskedArray by appending `.data` to the variable assigned to `get_raster()`.

            For example:

                gdownload = gplately.DataServer("Muller2019")

                graster = gdownload.get_raster(raster_id_string, verbose)

                graster_data = graster.data

            where `graster_data` is a numpy ndarray. This array can be visualised using 
            `matplotlib.pyplot.imshow` on a `cartopy.mpl.GeoAxis` GeoAxesSubplot 
            (see example below).

        Raises
        ------
        ValueError
            * if a `raster_id_string` is not supplied.

        Notes
        -----
        Rasters obtained by this method are (so far) only reconstructed to present-day. 

        Examples
        --------
        To download ETOPO1 and plot it on a Mollweide projection:

            import gplately
            import numpy as np
            import matplotlib.pyplot as plt
            import cartopy.crs as ccrs

            gdownload = gplately.DataServer("Muller2019")
            etopo1 = gdownload.get_raster("ETOPO1_tif")
            fig = plt.figure(figsize=(18,14), dpi=300)
            ax = fig.add_subplot(111, projection=ccrs.Mollweide(central_longitude = -150))
            ax2.imshow(etopo1, extent=[-180,180,-90,90], transform=ccrs.PlateCarree()) 

        """
        return get_raster(raster_id_string, self.verbose)


    def get_feature_data(self, feature_data_id_string=None):
        """Downloads assorted geological feature data from web servers (i.e. 
        [GPlates 2.3 sample data](https://www.earthbyte.org/gplates-2-3-software-and-data-sets/))
        into the "gplately" cache.

        Currently, `DataServer` supports the following feature data:

        * __Large igneous provinces from Johansson et al. (2018)__

            Information
            -----------
            * Formats: .gpmlz
            * `feature_data_id_string` = `Johansson2018`

            Citations
            ---------
            * Johansson, L., Zahirovic, S., and Müller, R. D., In Prep, The 
            interplay between the eruption and weathering of Large Igneous Provinces and 
            the deep-time carbon cycle: Geophysical Research Letters.


        - __Large igneous province products interpreted as plume products from Whittaker 
        et al. (2015)__.

            Information
            -----------
            * Formats: .gpmlz, .shp
            * `feature_data_id_string` = `Whittaker2015`
            
            Citations
            ---------
            * Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., 
            Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between 
            mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479-483. 
            doi:10.1038/ngeo2437.


        - __Seafloor tectonic fabric (fracture zones, discordant zones, V-shaped structures, 
        unclassified V-anomalies, propagating ridge lineations and extinct ridges) from 
        Matthews et al. (2011)__

            Information
            -----------
            * Formats: .gpml
            * `feature_data_id_string` = `SeafloorFabric`

            Citations
            ---------
            * Matthews, K.J., Müller, R.D., Wessel, P. and Whittaker, J.M., 2011. The 
            tectonic fabric of the ocean basins. Journal of Geophysical Research, 116(B12): 
            B12109, DOI: 10.1029/2011JB008413. 


        - __Present day surface hotspot/plume locations from Whittaker et al. (2013)__

            Information
            -----------
            * Formats: .gpmlz
            * `feature_data_id_string` = `Hotspots`

            Citation
            --------
            * Whittaker, J., Afonso, J., Masterton, S., Müller, R., Wessel, P., 
            Williams, S., and Seton, M., 2015, Long-term interaction between mid-ocean ridges and 
            mantle plumes: Nature Geoscience, v. 8, no. 6, p. 479-483, doi:10.1038/ngeo2437.

        
        Parameters
        ----------
        feature_data_id_string : str, default=None
            A string to identify which feature data to download to the cache (see list of supported
            feature data above).

        Returns
        -------
        feature_data_filenames : instance of <pygplates.FeatureCollection>, or list of instance <pygplates.FeatureCollection>
            If a single set of feature data is downloaded, a single pyGPlates `FeatureCollection` 
            object is returned. Otherwise, a list containing multiple pyGPlates `FeatureCollection` 
            objects is returned (like for `SeafloorFabric`). In the latter case, feature reconstruction 
            and plotting may have to be done iteratively.

        Raises
        ------
        ValueError
            If a `feature_data_id_string` is not provided.

        Examples
        --------
        For examples of plotting data downloaded with `get_feature_data`, see GPlately's sample 
        notebook 05 - Working With Feature Geometries [here](https://github.com/GPlates/gplately/blob/master/Notebooks/05-WorkingWithFeatureGeometries.ipynb).
        """
        if feature_data_id_string is None:
            raise ValueError(
                "Please specify which feature data to fetch."
            )

        database = _gplately.data._feature_data()

        found_collection = False
        for collection, zip_url in database.items():
            if feature_data_id_string.lower() == collection.lower():
                found_collection = True
                feature_data_filenames = _collection_sorter(
                    _collect_file_extension(
                    download_from_web(zip_url[0], self.verbose), [".gpml", ".gpmlz"]
                    ),
                    collection
                )

                break

        if found_collection is False:
            raise ValueError("{} are not in GPlately's DataServer.".format(feature_data_id_string))

        feat_data = _FeatureCollection()
        if len(feature_data_filenames) == 1:
                feat_data.add(_FeatureCollection(feature_data_filenames[0]))
                return feat_data
        else:    
            feat_data=[]
            for file in feature_data_filenames:
                feat_data.append(_FeatureCollection(file))
            return feat_data

Methods

def get_age_grid(self, time)

Downloads seafloor and paleo-age grids from the plate reconstruction model (file_collection) passed into the DataServer object. Stores grids in the "gplately" cache.

Currently, DataServer supports the following age grids:

  • Muller et al. 2019

    • file_collection = Muller2019
    • Time range: 0-250 Ma
    • Seafloor age grid rasters in netCDF format.
  • Muller et al. 2016

    • file_collection = Muller2016
    • Time range: 0-240 Ma
    • Seafloor age grid rasters in netCDF format.
  • Seton et al. 2012

    • file_collection = Seton2012
    • Time range: 0-200 Ma
    • Paleo-age grid rasters in netCDF format.

Parameters

time : int, or list of int, default=None
Request an age grid from one (an integer) or multiple reconstruction times (a list of integers).

Returns

a Raster object

A gplately.Raster object containing the age grid. The age grid data can be extracted into a numpy ndarray or MaskedArray by appending .data to the variable assigned to get_age_grid().

For example:

gdownload = gplately.DataServer("Muller2019")

graster = gdownload.get_age_grid(time=100)

graster_data = graster.data

where graster_data is a numpy ndarray.

Raises

ValueError
If time (a single integer, or a list of integers representing reconstruction times to extract the age grids from) is not passed.

Notes

The first time that get_age_grid is called for a specific time(s), the age grid(s) will be downloaded into the GPlately cache once. Upon successive calls of get_age_grid for the same reconstruction time(s), the age grids will not be re-downloaded; rather, they are re-accessed from the same cache provided the age grid(s) have not been moved or deleted.

Examples

if the DataServer object was called with the Muller2019 file_collection string:

gDownload = gplately.download.DataServer("Muller2019")

get_age_grid will download seafloor age grids from the Müller et al. (2019) plate reconstruction model for the geological time(s) requested in the time parameter. If found, these age grids are returned as masked arrays.

For example, to download Müller et al. (2019) seafloor age grids for 0Ma, 1Ma and 100 Ma:

age_grids = gDownload.get_age_grid([0, 1, 100])
Expand source code
def get_age_grid(self, time):
    """Downloads seafloor and paleo-age grids from the plate reconstruction model (`file_collection`)
    passed into the `DataServer` object. Stores grids in the "gplately" cache.

    Currently, `DataServer` supports the following age grids:

    * __Muller et al. 2019__

        * `file_collection` = `Muller2019`
        * Time range: 0-250 Ma
        * Seafloor age grid rasters in netCDF format.

    * __Muller et al. 2016__
        
        * `file_collection` = `Muller2016`
        * Time range: 0-240 Ma
        * Seafloor age grid rasters in netCDF format. 

    * __Seton et al. 2012__

        * `file_collection` = `Seton2012`
        * Time range: 0-200 Ma
        * Paleo-age grid rasters in netCDF format.

    
    Parameters
    ----------
    time : int, or list of int, default=None
        Request an age grid from one (an integer) or multiple reconstruction times (a
        list of integers).

    Returns
    -------
    a gplately.Raster object
        A gplately.Raster object containing the age grid. The age grid data can be extracted 
        into a numpy ndarray or MaskedArray by appending `.data` to the variable assigned to 
        `get_age_grid()`.

        For example:

            gdownload = gplately.DataServer("Muller2019")

            graster = gdownload.get_age_grid(time=100)

            graster_data = graster.data

        where `graster_data` is a numpy ndarray.

    Raises
    -----
    ValueError
        If `time` (a single integer, or a list of integers representing reconstruction
        times to extract the age grids from) is not passed.

    Notes
    -----
    The first time that `get_age_grid` is called for a specific time(s), the age grid(s) 
    will be downloaded into the GPlately cache once. Upon successive calls of `get_age_grid`
    for the same reconstruction time(s), the age grids will not be re-downloaded; rather, 
    they are re-accessed from the same cache provided the age grid(s) have not been moved or deleted. 

    Examples
    --------
    if the `DataServer` object was called with the `Muller2019` `file_collection` string:

        gDownload = gplately.download.DataServer("Muller2019")

    `get_age_grid` will download seafloor age grids from the Müller et al. (2019) plate 
    reconstruction model for the geological time(s) requested in the `time` parameter. 
    If found, these age grids are returned as masked arrays. 

    For example, to download  Müller et al. (2019) seafloor age grids for 0Ma, 1Ma and
    100 Ma:

        age_grids = gDownload.get_age_grid([0, 1, 100])
        
    """
    age_grids = []
    age_grid_links = DataCollection.netcdf4_age_grids(self, time)

    if not isinstance(time, list):
        time = [time]

    # For a single time passed that isn't in the valid time range, 
    if not age_grid_links:
        raise ValueError(
            "{} {}Ma age grids are not on GPlately's DataServer.".format(
                self.file_collection, 
                time[0]
            )
        )

    # For a list of times passed...
    for i, link in enumerate(age_grid_links):
        if not link:
            raise ValueError(
                "{} {}Ma age grids are not on GPlately's DataServer.".format(
                    self.file_collection,
                    time[i]
                )
            )
        age_grid_file = download_from_web(
            link, 
            verbose=self.verbose, 
            model_name=self.file_collection
        )
        age_grid = _gplately.grids.Raster(data=age_grid_file)
        age_grids.append(age_grid)

    # One last check to alert user if the masked array grids were not processed properly
    if not age_grids:
        raise ValueError("{} netCDF4 age grids not found.".format(self.file_collection))

    if len(age_grids) == 1:
        return age_grids[0]
    else: 
        return age_grids
def get_feature_data(self, feature_data_id_string=None)

Downloads assorted geological feature data from web servers (i.e. GPlates 2.3 sample data) into the "gplately" cache.

Currently, DataServer supports the following feature data:

  • Large igneous provinces from Johansson et al. (2018)

    Information

    • Formats: .gpmlz
    • feature_data_id_string = Johansson2018

    Citations

    • Johansson, L., Zahirovic, S., and Müller, R. D., In Prep, The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle: Geophysical Research Letters.
  • Large igneous province products interpreted as plume products from Whittaker et al. (2015).

    Information

    • Formats: .gpmlz, .shp
    • feature_data_id_string = Whittaker2015

    Citations

    • Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479-483. doi:10.1038/ngeo2437.
  • Seafloor tectonic fabric (fracture zones, discordant zones, V-shaped structures, unclassified V-anomalies, propagating ridge lineations and extinct ridges) from Matthews et al. (2011)

    Information

    • Formats: .gpml
    • feature_data_id_string = SeafloorFabric

    Citations

    • Matthews, K.J., Müller, R.D., Wessel, P. and Whittaker, J.M., 2011. The tectonic fabric of the ocean basins. Journal of Geophysical Research, 116(B12): B12109, DOI: 10.1029/2011JB008413.
  • Present day surface hotspot/plume locations from Whittaker et al. (2013)

    Information

    • Formats: .gpmlz
    • feature_data_id_string = Hotspots

    Citation

    • Whittaker, J., Afonso, J., Masterton, S., Müller, R., Wessel, P., Williams, S., and Seton, M., 2015, Long-term interaction between mid-ocean ridges and mantle plumes: Nature Geoscience, v. 8, no. 6, p. 479-483, doi:10.1038/ngeo2437.

Parameters

feature_data_id_string : str, default=None
A string to identify which feature data to download to the cache (see list of supported feature data above).

Returns

feature_data_filenames : instance of <pygplates.FeatureCollection>, or list of instance <pygplates.FeatureCollection>
If a single set of feature data is downloaded, a single pyGPlates FeatureCollection object is returned. Otherwise, a list containing multiple pyGPlates FeatureCollection objects is returned (like for SeafloorFabric). In the latter case, feature reconstruction and plotting may have to be done iteratively.

Raises

ValueError
If a feature_data_id_string is not provided.

Examples

For examples of plotting data downloaded with get_feature_data, see GPlately's sample notebook 05 - Working With Feature Geometries here.

Expand source code
def get_feature_data(self, feature_data_id_string=None):
    """Downloads assorted geological feature data from web servers (i.e. 
    [GPlates 2.3 sample data](https://www.earthbyte.org/gplates-2-3-software-and-data-sets/))
    into the "gplately" cache.

    Currently, `DataServer` supports the following feature data:

    * __Large igneous provinces from Johansson et al. (2018)__

        Information
        -----------
        * Formats: .gpmlz
        * `feature_data_id_string` = `Johansson2018`

        Citations
        ---------
        * Johansson, L., Zahirovic, S., and Müller, R. D., In Prep, The 
        interplay between the eruption and weathering of Large Igneous Provinces and 
        the deep-time carbon cycle: Geophysical Research Letters.


    - __Large igneous province products interpreted as plume products from Whittaker 
    et al. (2015)__.

        Information
        -----------
        * Formats: .gpmlz, .shp
        * `feature_data_id_string` = `Whittaker2015`
        
        Citations
        ---------
        * Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., 
        Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between 
        mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479-483. 
        doi:10.1038/ngeo2437.


    - __Seafloor tectonic fabric (fracture zones, discordant zones, V-shaped structures, 
    unclassified V-anomalies, propagating ridge lineations and extinct ridges) from 
    Matthews et al. (2011)__

        Information
        -----------
        * Formats: .gpml
        * `feature_data_id_string` = `SeafloorFabric`

        Citations
        ---------
        * Matthews, K.J., Müller, R.D., Wessel, P. and Whittaker, J.M., 2011. The 
        tectonic fabric of the ocean basins. Journal of Geophysical Research, 116(B12): 
        B12109, DOI: 10.1029/2011JB008413. 


    - __Present day surface hotspot/plume locations from Whittaker et al. (2013)__

        Information
        -----------
        * Formats: .gpmlz
        * `feature_data_id_string` = `Hotspots`

        Citation
        --------
        * Whittaker, J., Afonso, J., Masterton, S., Müller, R., Wessel, P., 
        Williams, S., and Seton, M., 2015, Long-term interaction between mid-ocean ridges and 
        mantle plumes: Nature Geoscience, v. 8, no. 6, p. 479-483, doi:10.1038/ngeo2437.

    
    Parameters
    ----------
    feature_data_id_string : str, default=None
        A string to identify which feature data to download to the cache (see list of supported
        feature data above).

    Returns
    -------
    feature_data_filenames : instance of <pygplates.FeatureCollection>, or list of instance <pygplates.FeatureCollection>
        If a single set of feature data is downloaded, a single pyGPlates `FeatureCollection` 
        object is returned. Otherwise, a list containing multiple pyGPlates `FeatureCollection` 
        objects is returned (like for `SeafloorFabric`). In the latter case, feature reconstruction 
        and plotting may have to be done iteratively.

    Raises
    ------
    ValueError
        If a `feature_data_id_string` is not provided.

    Examples
    --------
    For examples of plotting data downloaded with `get_feature_data`, see GPlately's sample 
    notebook 05 - Working With Feature Geometries [here](https://github.com/GPlates/gplately/blob/master/Notebooks/05-WorkingWithFeatureGeometries.ipynb).
    """
    if feature_data_id_string is None:
        raise ValueError(
            "Please specify which feature data to fetch."
        )

    database = _gplately.data._feature_data()

    found_collection = False
    for collection, zip_url in database.items():
        if feature_data_id_string.lower() == collection.lower():
            found_collection = True
            feature_data_filenames = _collection_sorter(
                _collect_file_extension(
                download_from_web(zip_url[0], self.verbose), [".gpml", ".gpmlz"]
                ),
                collection
            )

            break

    if found_collection is False:
        raise ValueError("{} are not in GPlately's DataServer.".format(feature_data_id_string))

    feat_data = _FeatureCollection()
    if len(feature_data_filenames) == 1:
            feat_data.add(_FeatureCollection(feature_data_filenames[0]))
            return feat_data
    else:    
        feat_data=[]
        for file in feature_data_filenames:
            feat_data.append(_FeatureCollection(file))
        return feat_data
def get_plate_reconstruction_files(self)

Downloads and constructs a rotation model, a set of topology_features and and a set of static_polygons needed to call the PlateReconstruction object.

Returns

rotation_model : instance of <pygplates.RotationModel>
A rotation model to query equivalent and/or relative topological plate rotations from a time in the past relative to another time in the past or to present day.
topology_features : instance of <pygplates.FeatureCollection>
Point, polyline and/or polygon feature data that are reconstructable through geological time.
static_polygons : instance of <pygplates.FeatureCollection>
Present-day polygons whose shapes do not change through geological time. They are used to cookie-cut dynamic polygons into identifiable topological plates (assigned an ID) according to their present-day locations.

Notes

This method accesses the plate reconstruction model ascribed to the file_collection string passed into the DataServer object. For example, if the object was called with "Muller2019":

gDownload = gplately.download.DataServer("Muller2019")
rotation_model, topology_features, static_polygons = gDownload.get_plate_reconstruction_files()

the method will download a rotation_model, topology_features and static_polygons from the Müller et al. (2019) plate reconstruction model. Once the reconstruction objects are returned, they can be passed into:

model = gplately.reconstruction.PlateReconstruction(rotation_model, topology_features, static_polygons)
  • Note: If the requested plate model does not have a certain file(s), a message will be printed to alert the user. For example, using get_plate_reconstruction_files() for the Torsvik and Cocks (2017) plate reconstruction model yields the printed message:
    No topology features in TorsvikCocks2017. No FeatureCollection created - unable to 
    plot trenches, ridges and transforms.
    No continent-ocean boundaries in TorsvikCocks2017.
    
Expand source code
def get_plate_reconstruction_files(self):
    """Downloads and constructs a `rotation model`, a set of `topology_features` and
    and a set of `static_polygons` needed to call the `PlateReconstruction` object.

    Returns
    -------
    rotation_model : instance of <pygplates.RotationModel>
        A rotation model to query equivalent and/or relative topological plate rotations
        from a time in the past relative to another time in the past or to present day.
    topology_features : instance of <pygplates.FeatureCollection>
        Point, polyline and/or polygon feature data that are reconstructable through 
        geological time.
    static_polygons : instance of <pygplates.FeatureCollection>
        Present-day polygons whose shapes do not change through geological time. They are
        used to cookie-cut dynamic polygons into identifiable topological plates (assigned 
        an ID) according to their present-day locations.

    Notes
    -----
    This method accesses the plate reconstruction model ascribed to the `file_collection` string passed 
    into the `DataServer` object. For example, if the object was called with `"Muller2019"`:

        gDownload = gplately.download.DataServer("Muller2019")
        rotation_model, topology_features, static_polygons = gDownload.get_plate_reconstruction_files()

    the method will download a `rotation_model`, `topology_features` and `static_polygons` from the 
    Müller et al. (2019) plate reconstruction model. Once the reconstruction objects are returned, 
    they can be passed into:

        model = gplately.reconstruction.PlateReconstruction(rotation_model, topology_features, static_polygons)

    * Note: If the requested plate model does not have a certain file(s), a message will be printed 
    to alert the user. For example, using `get_plate_reconstruction_files()`
    for the Torsvik and Cocks (2017) plate reconstruction model yields the printed message:

            No topology features in TorsvikCocks2017. No FeatureCollection created - unable to 
            plot trenches, ridges and transforms.
            No continent-ocean boundaries in TorsvikCocks2017.

    """

    verbose = self.verbose

    rotation_filenames = []
    rotation_model = []
    topology_filenames = []
    topology_features = _FeatureCollection()
    static_polygons= _FeatureCollection()
    static_polygon_filenames = []

    # Locate all plate reconstruction files from GPlately's DataCollection
    database = DataCollection.plate_reconstruction_files(self)

    # Set to true if we find the given collection in our database
    found_collection = False
    for collection, url in database.items():

        # Only continue if the user's chosen collection exists in our database
        if self.file_collection.lower() == collection.lower():
            found_collection = True
            if len(url) == 1:
                fnames = _collection_sorter(
                    download_from_web(url[0], verbose, model_name=self.file_collection), self.file_collection
                )
                rotation_filenames = _collect_file_extension(
                    _str_in_folder(
                        _str_in_filename(fnames,
                            strings_to_include=DataCollection.rotation_strings_to_include(self),
                            strings_to_ignore=DataCollection.rotation_strings_to_ignore(self),
                            file_collection=self.file_collection,
                            file_collection_sensitive=True
                        ),
                    strings_to_ignore=DataCollection.rotation_strings_to_ignore(self)
                    ),
                    [".rot"]
                )
                #print(rotation_filenames)
                rotation_model = _RotationModel(rotation_filenames)

                topology_filenames = _collect_file_extension(
                    _str_in_folder(
                        _str_in_filename(fnames, 
                            strings_to_include=DataCollection.dynamic_polygon_strings_to_include(self),
                            strings_to_ignore=DataCollection.dynamic_polygon_strings_to_ignore(self),
                            file_collection=self.file_collection,
                            file_collection_sensitive=False,
                        ), 
                        strings_to_ignore=DataCollection.dynamic_polygon_strings_to_ignore(self)
                    ),
                    [".gpml", ".gpmlz"]
                )
                #print(topology_filenames)
                for file in topology_filenames:
                    topology_features.add(_FeatureCollection(file))

                static_polygon_filenames = _check_gpml_or_shp(
                    _str_in_folder(
                        _str_in_filename(fnames, 
                            strings_to_include=DataCollection.static_polygon_strings_to_include(self),
                            strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self),
                            file_collection=self.file_collection,
                            file_collection_sensitive=False
                        ),
                        strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self)
                    )
                )
                #print(static_polygon_filenames)
                for stat in static_polygon_filenames:
                    static_polygons.add(_FeatureCollection(stat))

            else:
                for file in url[0]:
                    rotation_filenames.append(_collect_file_extension(download_from_web(file, verbose, model_name=self.file_collection), [".rot"]))
                    rotation_model = _RotationModel(rotation_filenames)

                for file in url[1]:
                    topology_filenames.append(_collect_file_extension(download_from_web(file, verbose, model_name=self.file_collection), [".gpml"]))
                    for file in topology_filenames:
                        topology_features.add(_FeatureCollection(file))

                for file in url[2]:
                    static_polygon_filenames.append(
                        _check_gpml_or_shp(
                            _str_in_folder(
                                _str_in_filename(download_from_web(url[0], verbose, model_name=self.file_collection), 
                                    strings_to_include=DataCollection.static_polygon_strings_to_include(self)
                                ),    
                                    strings_to_ignore=DataCollection.static_polygon_strings_to_ignore(self)
                            )
                        )   
                    )
                    for stat in static_polygon_filenames:
                        static_polygons.add(_FeatureCollection(stat))
            break

    if found_collection is False:
        raise ValueError("{} is not in GPlately's DataServer.".format(self.file_collection))

    if not rotation_filenames:
        print("No .rot files in {}. No rotation model created.".format(self.file_collection))
        rotation_model = []
    if not topology_filenames:
        print("No topology features in {}. No FeatureCollection created - unable to plot trenches, ridges and transforms.".format(self.file_collection))
        topology_features = []
    if not static_polygons:
        print("No static polygons in {}.".format(self.file_collection))
        static_polygons = []

    # add identifier for setting up DownloadServer independently
    rotation_model.reconstruction_identifier = self.file_collection

    return rotation_model, topology_features, static_polygons
def get_raster(self, raster_id_string=None)

Downloads assorted raster data that are not associated with the plate reconstruction models supported by GPlately's DataServer. Stores rasters in the "gplately" cache.

Currently, DataServer supports the following rasters and images:

  • ETOPO1:
    • Filetypes available : TIF, netCDF (GRD)
    • raster_id_string = "ETOPO1_grd", "ETOPO1_tif" (depending on the requested format)
    • A 1-arc minute global relief model combining lang topography and ocean bathymetry.
    • Citation: doi:10.7289/V5C8276M

Parameters

raster_id_string : str, default=None
A string to identify which raster to download.

Returns

a Raster object

A gplately.Raster object containing the raster data. The gridded data can be extracted into a numpy ndarray or MaskedArray by appending .data to the variable assigned to get_raster().

For example:

gdownload = gplately.DataServer("Muller2019")

graster = gdownload.get_raster(raster_id_string, verbose)

graster_data = graster.data

where graster_data is a numpy ndarray. This array can be visualised using matplotlib.pyplot.imshow on a cartopy.mpl.GeoAxis GeoAxesSubplot (see example below).

Raises

ValueError
  • if a raster_id_string is not supplied.

Notes

Rasters obtained by this method are (so far) only reconstructed to present-day.

Examples

To download ETOPO1 and plot it on a Mollweide projection:

import gplately
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

gdownload = gplately.DataServer("Muller2019")
etopo1 = gdownload.get_raster("ETOPO1_tif")
fig = plt.figure(figsize=(18,14), dpi=300)
ax = fig.add_subplot(111, projection=ccrs.Mollweide(central_longitude = -150))
ax2.imshow(etopo1, extent=[-180,180,-90,90], transform=ccrs.PlateCarree())
Expand source code
def get_raster(self, raster_id_string=None):
    """Downloads assorted raster data that are not associated with the plate 
    reconstruction models supported by GPlately's `DataServer`. Stores rasters in the 
    "gplately" cache.

    Currently, `DataServer` supports the following rasters and images:

    * __[ETOPO1](https://www.ngdc.noaa.gov/mgg/global/)__: 
        * Filetypes available : TIF, netCDF (GRD)
        * `raster_id_string` = `"ETOPO1_grd"`, `"ETOPO1_tif"` (depending on the requested format)
        * A 1-arc minute global relief model combining lang topography and ocean bathymetry.
        * Citation: doi:10.7289/V5C8276M


    Parameters
    ----------
    raster_id_string : str, default=None
        A string to identify which raster to download.

    Returns
    -------
    a gplately.Raster object
        A gplately.Raster object containing the raster data. The gridded data can be extracted 
        into a numpy ndarray or MaskedArray by appending `.data` to the variable assigned to `get_raster()`.

        For example:

            gdownload = gplately.DataServer("Muller2019")

            graster = gdownload.get_raster(raster_id_string, verbose)

            graster_data = graster.data

        where `graster_data` is a numpy ndarray. This array can be visualised using 
        `matplotlib.pyplot.imshow` on a `cartopy.mpl.GeoAxis` GeoAxesSubplot 
        (see example below).

    Raises
    ------
    ValueError
        * if a `raster_id_string` is not supplied.

    Notes
    -----
    Rasters obtained by this method are (so far) only reconstructed to present-day. 

    Examples
    --------
    To download ETOPO1 and plot it on a Mollweide projection:

        import gplately
        import numpy as np
        import matplotlib.pyplot as plt
        import cartopy.crs as ccrs

        gdownload = gplately.DataServer("Muller2019")
        etopo1 = gdownload.get_raster("ETOPO1_tif")
        fig = plt.figure(figsize=(18,14), dpi=300)
        ax = fig.add_subplot(111, projection=ccrs.Mollweide(central_longitude = -150))
        ax2.imshow(etopo1, extent=[-180,180,-90,90], transform=ccrs.PlateCarree()) 

    """
    return get_raster(raster_id_string, self.verbose)
def get_spreading_rate_grid(self, time)

Downloads seafloor spreading rate grids from the plate reconstruction model (file_collection) passed into the DataServer object. Stores grids in the "gplately" cache.

Currently, DataServer supports spreading rate grids from the following plate models:

  • Clennett et al. 2020

    • file_collection = Clennett2020
    • Time range: 0-250 Ma
    • Seafloor spreading rate grids in netCDF format.

Parameters

time : int, or list of int, default=None
Request a spreading grid from one (an integer) or multiple reconstruction times (a list of integers).

Returns

a Raster object

A gplately.Raster object containing the spreading rate grid. The spreading rate grid data can be extracted into a numpy ndarray or MaskedArray by appending .data to the variable assigned to get_spreading_rate_grid().

For example:

gdownload = gplately.DataServer("Clennett2020")

graster = gdownload.get_spreading_rate_grid(time=100)

graster_data = graster.data

where graster_data is a numpy ndarray.

Raises

ValueError
If time (a single integer, or a list of integers representing reconstruction times to extract the spreading rate grids from) is not passed.

Notes

The first time that get_spreading_rate_grid is called for a specific time(s), the spreading rate grid(s) will be downloaded into the GPlately cache once. Upon successive calls of get_spreading_rate_grid for the same reconstruction time(s), the grids will not be re-downloaded; rather, they are re-accessed from the same cache location provided they have not been moved or deleted.

Examples

if the DataServer object was called with the Clennett2020 file_collection string:

gDownload = gplately.download.DataServer("Clennett2020")

get_spreading_rate_grid will download seafloor spreading rate grids from the Clennett et al. (2020) plate reconstruction model for the geological time(s) requested in the time parameter. When found, these spreading rate grids are returned as masked arrays.

For example, to download Clennett et al. (2020) seafloor spreading rate grids for 0Ma, 1Ma and 100 Ma as MaskedArray objects:

spreading_rate_grids = gDownload.get_spreading_rate_grid([0, 1, 100])
Expand source code
def get_spreading_rate_grid(self, time):
    """Downloads seafloor spreading rate grids from the plate reconstruction 
    model (`file_collection`) passed into the `DataServer` object. Stores 
    grids in the "gplately" cache.

    Currently, `DataServer` supports spreading rate grids from the following plate
    models:

    * __Clennett et al. 2020__

        * `file_collection` = `Clennett2020`
        * Time range: 0-250 Ma
        * Seafloor spreading rate grids in netCDF format.

    
    Parameters
    ----------
    time : int, or list of int, default=None
        Request a spreading grid from one (an integer) or multiple reconstruction 
        times (a list of integers).

    Returns
    -------
    a gplately.Raster object
        A gplately.Raster object containing the spreading rate grid. The spreading 
        rate grid data can be extracted into a numpy ndarray or MaskedArray by 
        appending `.data` to the variable assigned to `get_spreading_rate_grid()`.

        For example:

            gdownload = gplately.DataServer("Clennett2020")

            graster = gdownload.get_spreading_rate_grid(time=100)

            graster_data = graster.data

        where `graster_data` is a numpy ndarray.

    Raises
    -----
    ValueError
        If `time` (a single integer, or a list of integers representing reconstruction
        times to extract the spreading rate grids from) is not passed.

    Notes
    -----
    The first time that `get_spreading_rate_grid` is called for a specific time(s), 
    the spreading rate grid(s) will be downloaded into the GPlately cache once. 
    Upon successive calls of `get_spreading_rate_grid` for the same reconstruction 
    time(s), the grids will not be re-downloaded; rather, they are re-accessed from 
    the same cache location provided they have not been moved or deleted. 

    Examples
    --------
    if the `DataServer` object was called with the `Clennett2020` `file_collection` string:

        gDownload = gplately.download.DataServer("Clennett2020")

    `get_spreading_rate_grid` will download seafloor spreading rate grids from the 
    Clennett et al. (2020) plate reconstruction model for the geological time(s) 
    requested in the `time` parameter. When found, these spreading rate grids are 
    returned as masked arrays. 

    For example, to download Clennett et al. (2020) seafloor spreading rate grids for 
    0Ma, 1Ma and 100 Ma as MaskedArray objects:

        spreading_rate_grids = gDownload.get_spreading_rate_grid([0, 1, 100])
        
    """
    spreading_rate_grids = []
    spreading_rate_grid_links = DataCollection.netcdf4_spreading_rate_grids(self, time)

    if not isinstance(time, list):
        time = [time]

    # For a single time passed that isn't in the valid time range, 
    if not spreading_rate_grid_links:
        raise ValueError(
            "{} {}Ma spreading rate grids are not on GPlately's DataServer.".format(
                self.file_collection,
                time[0]
            )
        )
    # For a list of times passed...
    for i, link in enumerate(spreading_rate_grid_links):
        if not link:
            raise ValueError(
                "{} {}Ma spreading rate grids are not on GPlately's DataServer.".format(
                    self.file_collection,
                    time[i]
                )
            )
        spreading_rate_grid_file = download_from_web(
            link, 
            verbose=self.verbose, 
            model_name=self.file_collection
        )
        spreading_rate_grid = _gplately.grids.Raster(data=spreading_rate_grid_file)
        spreading_rate_grids.append(spreading_rate_grid)

    # One last check to alert user if the masked array grids were not processed properly
    if not spreading_rate_grids:
        raise ValueError("{} netCDF4 seafloor spreading rate grids not found.".format(self.file_collection))

    if len(spreading_rate_grids) == 1:
        return spreading_rate_grids[0]
    else: 
        return spreading_rate_grids
def get_topology_geometries(self)

Uses Pooch to download coastline, continent and COB (continent-ocean boundary) Shapely geometries from the requested plate model. These are needed to call the PlotTopologies object and visualise topological plates through time.

Parameters

verbose : bool, default True
Toggle print messages regarding server/internet connection status, file availability etc.

Returns

coastlines : instance of <pygplates.FeatureCollection>
Present-day global coastline Shapely polylines cookie-cut using static polygons. Ready for reconstruction to a particular geological time and for plotting.
continents : instance of <pygplates.FeatureCollection>
Cookie-cutting Shapely polygons for non-oceanic regions (continents, inta-oceanic arcs, etc.) ready for reconstruction to a particular geological time and for plotting.
COBs : instance of <pygplates.FeatureCollection>
Shapely polylines resolved from .shp and/or .gpml topology files that represent the locations of the boundaries between oceanic and continental crust. Ready for reconstruction to a particular geological time and for plotting.

Notes

This method accesses the plate reconstruction model ascribed to the file_collection string passed into the DataServer object. For example, if the object was called with "Muller2019":

gDownload = gplately.download.DataServer("Muller2019")
coastlines, continents, COBs = gDownload.get_topology_geometries()

the method will attempt to download coastlines, continents and COBs from the Müller et al. (2019) plate reconstruction model. If found, these files are returned as individual pyGPlates Feature Collections. They can be passed into:

gPlot = gplately.plot.PlotTopologies(gplately.reconstruction.PlateReconstruction, time, continents, coastlines, COBs)

to reconstruct features to a certain geological time. The PlotTopologies object provides simple methods to plot these geometries along with trenches, ridges and transforms (see documentation for more info). Note that the PlateReconstruction object is a parameter.

  • Note: If the requested plate model does not have a certain geometry, a message will be printed to alert the user. For example, if get_topology_geometries() is used with the "Matthews2016" plate model, the workflow will print the following message:
    No continent-ocean boundaries in Matthews2016.
    
Expand source code
def get_topology_geometries(self):
    """Uses Pooch to download coastline, continent and COB (continent-ocean boundary)
    Shapely geometries from the requested plate model. These are needed to call the `PlotTopologies`
    object and visualise topological plates through time.

    Parameters
    ----------
    verbose : bool, default True
        Toggle print messages regarding server/internet connection status, file availability etc.

    Returns
    -------
    coastlines : instance of <pygplates.FeatureCollection>
        Present-day global coastline Shapely polylines cookie-cut using static polygons. Ready for
        reconstruction to a particular geological time and for plotting.

    continents : instance of <pygplates.FeatureCollection>
        Cookie-cutting Shapely polygons for non-oceanic regions (continents, inta-oceanic arcs, etc.)
        ready for reconstruction to a particular geological time and for plotting.

    COBs : instance of <pygplates.FeatureCollection>
        Shapely polylines resolved from .shp and/or .gpml topology files that represent the 
        locations of the boundaries between oceanic and continental crust.
        Ready for reconstruction to a particular geological time and for plotting.

    Notes
    -----
    This method accesses the plate reconstruction model ascribed to the `file_collection` 
    string passed into the `DataServer` object. For example, if the object was called with
    `"Muller2019"`:

        gDownload = gplately.download.DataServer("Muller2019")
        coastlines, continents, COBs = gDownload.get_topology_geometries()

    the method will attempt to download `coastlines`, `continents` and `COBs` from the Müller
    et al. (2019) plate reconstruction model. If found, these files are returned as individual 
    pyGPlates Feature Collections. They can be passed into:

        gPlot = gplately.plot.PlotTopologies(gplately.reconstruction.PlateReconstruction, time, continents, coastlines, COBs)

    to reconstruct features to a certain geological time. The `PlotTopologies`
    object provides simple methods to plot these geometries along with trenches, ridges and 
    transforms (see documentation for more info). Note that the `PlateReconstruction` object 
    is a parameter.

    * Note: If the requested plate model does not have a certain geometry, a
    message will be printed to alert the user. For example, if `get_topology_geometries()` 
    is used with the `"Matthews2016"` plate model, the workflow will print the following 
    message: 

            No continent-ocean boundaries in Matthews2016.
    """

    verbose = self.verbose

    # Locate all topology geometries from GPlately's DataCollection
    database = DataCollection.topology_geometries(self)

    coastlines = []
    continents = []
    COBs = []
    
    # Find the requested plate model data collection
    found_collection = False
    for collection, url in database.items():

        if self.file_collection.lower() == collection.lower():
            found_collection = True

            if len(url) == 1:
                # Some plate models do not have reconstructable geometries i.e. Li et al. 2008
                if url[0] is None:
                    break
                else:
                    fnames = _collection_sorter(
                        download_from_web(url[0], verbose, model_name=self.file_collection), self.file_collection
                    )
                    coastlines = _check_gpml_or_shp(
                        _str_in_folder(
                            _str_in_filename(
                                fnames,
                                strings_to_include=DataCollection.coastline_strings_to_include(self),
                                strings_to_ignore=DataCollection.coastline_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=False
                            ), 
                            strings_to_ignore=DataCollection.coastline_strings_to_ignore(self)
                        )
                    )
                    continents = _check_gpml_or_shp(
                        _str_in_folder(
                            _str_in_filename(
                                fnames, 
                                strings_to_include=DataCollection.continent_strings_to_include(self),
                                strings_to_ignore=DataCollection.continent_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=False
                            ), 
                            strings_to_ignore=DataCollection.continent_strings_to_ignore(self)
                        )
                    )
                    COBs = _check_gpml_or_shp(
                        _str_in_folder(
                            _str_in_filename(
                                fnames,
                                strings_to_include=DataCollection.COB_strings_to_include(self),
                                strings_to_ignore=DataCollection.COB_strings_to_ignore(self),
                                file_collection=self.file_collection,
                                file_collection_sensitive=False
                            ), 
                            strings_to_ignore=DataCollection.COB_strings_to_ignore(self)
                        )
                    )
            else:
                for file in url[0]:
                    if url[0] is not None:
                        coastlines.append(_str_in_filename(
                            download_from_web(file, verbose, model_name=self.file_collection), 
                            strings_to_include=["coastline"])
                        )
                        coastlines = _check_gpml_or_shp(coastlines)
                    else:
                        coastlines = []

                for file in url[1]:
                    if url[1] is not None:
                        continents.append(_str_in_filename(
                            download_from_web(file, verbose, model_name=self.file_collection), 
                            strings_to_include=["continent"])
                        )
                        continents = _check_gpml_or_shp(continents)
                    else:
                        continents = []

                for file in url[2]:
                    if url[2] is not None:
                        COBs.append(_str_in_filename(
                            download_from_web(file, verbose, model_name=self.file_collection), 
                            strings_to_include=["cob"])
                        )
                        COBs = _check_gpml_or_shp(COBs)
                    else:
                        COBs = []
            break

    if found_collection is False:
        raise ValueError("{} is not in GPlately's DataServer.".format(self.file_collection))

    if not coastlines:
        print("No coastlines in {}.".format(self.file_collection))
        coastlines_featurecollection = []
    else:
        #print(coastlines)
        coastlines_featurecollection = _FeatureCollection()
        for coastline in coastlines:
            coastlines_featurecollection.add(_FeatureCollection(coastline))
    
    if not continents:
        print("No continents in {}.".format(self.file_collection))
        continents_featurecollection = []
    else:
        #print(continents)
        continents_featurecollection = _FeatureCollection()
        for continent in continents:
            continents_featurecollection.add(_FeatureCollection(continent))
    
    if not COBs:
        print("No continent-ocean boundaries in {}.".format(self.file_collection))
        COBs_featurecollection = []
    else:
        #print(COBs)
        COBs_featurecollection = _FeatureCollection()
        for COB in COBs:
            COBs_featurecollection.add(_FeatureCollection(COB))
    
    geometries = coastlines_featurecollection, continents_featurecollection, COBs_featurecollection
    return geometries
def get_valid_times(self)

Returns a tuple of the valid plate model time range, (min_time, max_time).

Expand source code
def get_valid_times(self):
    """Returns a tuple of the valid plate model time range, (min_time, max_time).
    """
    all_model_valid_times = DataCollection.plate_model_valid_reconstruction_times(self)

    min_time = None
    max_time = None
    for plate_model_name, valid_times in list(all_model_valid_times.items()):
        if plate_model_name.lower() == self.file_collection.lower():
            min_time = valid_times[0]
            max_time = valid_times[1]
    if not min_time and not max_time:
        raise ValueError("Could not find the valid reconstruction time of {}".format(self.file_collection))

    return (min_time, max_time)
class PlateReconstruction (rotation_model, topology_features=None, static_polygons=None, anchor_plate_id=0)

The PlateReconstruction class contains methods to reconstruct topology features to specific geological times given a rotation_model, a set of topology_features and a set of static_polygons. Topological plate velocity data at specific geological times can also be calculated from these reconstructed features.

Attributes

rotation_model : str, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>, or instance of <pygplates.RotationModel>, default None
A rotation model to query equivalent and/or relative topological plate rotations from a time in the past relative to another time in the past or to present day. Can be provided as a rotation filename, or rotation feature collection, or rotation feature, or sequence of rotation features, or a sequence (eg, a list or tuple) of any combination of those four types.
topology_features : str, or a sequence (eg, list or tuple) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>, default None
Reconstructable topological features like trenches, ridges and transforms. Can be provided as an optional topology-feature filename, or sequence of features, or a single feature.
static_polygons : str, or instance of <pygplates.Feature>, or sequence of <pygplates.Feature>,or an instance of <pygplates.FeatureCollection>, default None
Present-day polygons whose shapes do not change through geological time. They are used to cookie-cut dynamic polygons into identifiable topological plates (assigned an ID) according to their present-day locations. Can be provided as a static polygon feature collection, or optional filename, or a single feature, or a sequence of features.
Expand source code
class PlateReconstruction(object):
    """The `PlateReconstruction` class contains methods to reconstruct topology features to specific
    geological times given a `rotation_model`, a set of `topology_features` and a set of
    `static_polygons`. Topological plate velocity data at specific geological times can also be
    calculated from these reconstructed features.

    Attributes
    ----------
    rotation_model : str, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>, or instance of <pygplates.RotationModel>, default None
        A rotation model to query equivalent and/or relative topological plate rotations
        from a time in the past relative to another time in the past or to present day. Can be
        provided as a rotation filename, or rotation feature collection, or rotation feature, or
        sequence of rotation features, or a sequence (eg, a list or tuple) of any combination of
        those four types.
    topology_features : str, or a sequence (eg, `list` or `tuple`) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>, default None
        Reconstructable topological features like trenches, ridges and transforms. Can be provided
        as an optional topology-feature filename, or sequence of features, or a single feature.
    static_polygons : str, or instance of <pygplates.Feature>, or sequence of <pygplates.Feature>,or an instance of <pygplates.FeatureCollection>, default None
        Present-day polygons whose shapes do not change through geological time. They are
        used to cookie-cut dynamic polygons into identifiable topological plates (assigned
        an ID) according to their present-day locations. Can be provided as a static polygon feature
        collection, or optional filename, or a single feature, or a sequence of
        features.
    """

    def __init__(
        self,
        rotation_model,
        topology_features=None,
        static_polygons=None,
        anchor_plate_id=0,
    ):
        if hasattr(rotation_model, "reconstruction_identifier"):
            self.name = rotation_model.reconstruction_identifier
        else:
            self.name = None

        self._anchor_plate_id = self._check_anchor_plate_id(anchor_plate_id)
        self.rotation_model = _RotationModel(rotation_model, default_anchor_plate_id=anchor_plate_id)
        self.topology_features = _load_FeatureCollection(topology_features)
        self.static_polygons = _load_FeatureCollection(static_polygons)

    def __getstate__(self):
        filenames = {
            "rotation_model": self.rotation_model.filenames,
            "anchor_plate_id": self.anchor_plate_id,
        }

        if self.topology_features:
            filenames["topology_features"] = self.topology_features.filenames
        if self.static_polygons:
            filenames["static_polygons"] = self.static_polygons.filenames

        # # remove unpicklable items
        # del self.rotation_model, self.topology_features, self.static_polygons

        # # really make sure they're gone
        # self.rotation_model = None
        # self.topology_features = None
        # self.static_polygons = None

        return filenames

    def __setstate__(self, state):
        # reinstate unpicklable items
        self.rotation_model = _RotationModel(
            state["rotation_model"], default_anchor_plate_id=state["anchor_plate_id"]
        )

        self.anchor_plate_id = state["anchor_plate_id"]
        self.topology_features = None
        self.static_polygons = None

        if "topology_features" in state:
            self.topology_features = _FeatureCollection()
            for topology in state["topology_features"]:
                self.topology_features.add(_FeatureCollection(topology))

        if "static_polygons" in state:
            self.static_polygons = _FeatureCollection()
            for polygon in state["static_polygons"]:
                self.static_polygons.add(_FeatureCollection(polygon))


    @property
    def anchor_plate_id(self):
        """Anchor plate ID for reconstruction. Must be an integer >= 0."""
        return self._anchor_plate_id

    @anchor_plate_id.setter
    def anchor_plate_id(self, anchor_plate):
        self._anchor_plate_id = self._check_anchor_plate_id(anchor_plate)
        self.rotation_model = _RotationModel(self.rotation_model, default_anchor_plate_id=self._anchor_plate_id)

    @staticmethod
    def _check_anchor_plate_id(id):
        id = int(id)
        if id < 0:
            raise ValueError("Invalid anchor plate ID: {}".format(id))
        return id


    def tessellate_subduction_zones(
        self,
        time,
        tessellation_threshold_radians=0.001,
        ignore_warnings=False,
        return_geodataframe=False,
        **kwargs
    ):
        """Samples points along subduction zone trenches and obtains subduction data at a particular
        geological time.

        Resolves topologies at `time`, tessellates all resolved subducting features to within 'tessellation_threshold_radians'
        radians and obtains the following information for each sampled point along a trench:

        `tessellate_subduction_zones` returns a list of 10 vertically-stacked tuples with the following data per sampled trench point:

        * Col. 0 - longitude of sampled trench point
        * Col. 1 - latitude of sampled trench point
        * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
        * Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
        * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
        * Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
        * Col. 6 - length of arc segment (in degrees) that current point is on
        * Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
        * Col. 8 - subducting plate ID
        * Col. 9 - trench plate ID


        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query subduction convergence.

        tessellation_threshold_radians : float, default=0.001
            The threshold sampling distance along the subducting trench (in radians).

        Returns
        -------
        subduction_data : a list of vertically-stacked tuples
            The results for all tessellated points sampled along the trench.
            The size of the returned list is equal to the number of tessellated points.
            Each tuple in the list corresponds to a tessellated point and has the following tuple items:

            * Col. 0 - longitude of sampled trench point
            * Col. 1 - latitude of sampled trench point
            * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
            * Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
            * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
            * Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
            * Col. 6 - length of arc segment (in degrees) that current point is on
            * Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
            * Col. 8 - subducting plate ID
            * Col. 9 - trench plate ID

        Notes
        -----
        Each sampled point in the output is the midpoint of a great circle arc between two adjacent points in the trench polyline.
        The trench normal vector used in the obliquity calculations is perpendicular to the great circle arc of each point
        (arc midpoint) and pointing towards the overriding plate (rather than away from it).

        Each trench is sampled at approximately uniform intervals along its length (specified via a threshold sampling distance).
        The sampling along the entire length of a trench is not exactly uniform. Each segment along a trench is sampled
        such that the samples have a uniform spacing that is less than or equal to the threshold sampling distance. However each
        segment in a trench might have a slightly different spacing distance (since segment lengths are not integer multiples of
        the threshold sampling distance).

        The trench normal (at each arc segment mid-point) always points *towards* the overriding plate.
        The obliquity angles are in the range (-180 180). The range (0, 180) goes clockwise (when viewed from above the Earth)
        from the trench normal direction to the velocity vector. The range (0, -180) goes counter-clockwise.
        You can change the range (-180, 180) to the range (0, 360) by adding 360 to negative angles.
        The trench normal is perpendicular to the trench and pointing toward the overriding plate.

        Note that the convergence velocity magnitude is negative if the plates are diverging (if convergence obliquity angle
        is greater than 90 or less than -90). And note that the absolute velocity magnitude is negative if the trench
        (subduction zone) is moving towards the overriding plate (if absolute obliquity angle is less than 90 or greater
        than -90) - note that this ignores the kinematics of the subducting plate.

        The delta time interval used for velocity calculations is, by default, assumed to be 1Ma.
        """
        from . import ptt as _ptt

        anchor_plate_id = kwargs.pop("anchor_plate_id", self.anchor_plate_id)

        if ignore_warnings:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                subduction_data = _ptt.subduction_convergence.subduction_convergence(
                    self.rotation_model,
                    self.topology_features,
                    tessellation_threshold_radians,
                    float(time),
                    anchor_plate_id=anchor_plate_id,
                    **kwargs
                )

        else:
            subduction_data = _ptt.subduction_convergence.subduction_convergence(
                self.rotation_model,
                self.topology_features,
                tessellation_threshold_radians,
                float(time),
                anchor_plate_id=anchor_plate_id,
                **kwargs
            )

        subduction_data = np.vstack(subduction_data)

        if return_geodataframe:
            import geopandas as gpd
            from shapely import geometry

            coords = [
                geometry.Point(lon, lat)
                for lon, lat in zip(subduction_data[:, 0], subduction_data[:, 1])
            ]
            d = {"geometry": coords}

            labels = [
                "convergence velocity (cm/yr)",
                "convergence obliquity angle (degrees)",
                "trench velocity (cm/yr)",
                "trench obliquity angle (degrees)",
                "length (degrees)",
                "trench normal angle (degrees)",
                "subducting plate ID",
                "overriding plate ID",
            ]

            for i, label in enumerate(labels):
                index = 2 + i
                d[label] = subduction_data[:, index]

            gdf = gpd.GeoDataFrame(d, geometry="geometry")
            return gdf

        else:
            return subduction_data

    def total_subduction_zone_length(self, time, use_ptt=False, ignore_warnings=False):
        """Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

        if `use_ptt` is True

        Uses Plate Tectonic Tools' `subduction_convergence` module to calculate trench segment lengths on a unit sphere.
        The aggregated total subduction zone length is scaled to kilometres using the geocentric radius.

        Otherwise

        Resolves topology features ascribed to the `PlateReconstruction` model and extracts their shared boundary sections.
        The lengths of each trench boundary section are appended to the total subduction zone length.
        The total length is scaled to kilometres using a latitude-dependent (geocentric) Earth radius.


        Parameters
        ----------
        time : int
            The geological time at which to calculate total mid-ocean ridge lengths.
        use_ptt : bool, default=False
            If set to `True`, the PTT method is used.
        ignore_warnings : bool, default=False
            Choose whether to ignore warning messages from PTT's `subduction_convergence` workflow. These warnings alert the user
            when certain subduction sub-segments are ignored - this happens when the trench segments have unidentifiable subduction
            polarities and/or subducting plates.

        Raises
        ------
        ValueError
            If neither `use_pygplates` or `use_ptt` have been set to `True`.

        Returns
        -------
        total_subduction_zone_length_kms : float
            The total subduction zone length (in km) at the specified `time`.

        """
        from . import ptt as _ptt

        if use_ptt:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                subduction_data = self.tessellate_subduction_zones(
                    time, ignore_warnings=ignore_warnings
                )

            trench_arcseg = subduction_data[:, 6]
            trench_pt_lat = subduction_data[:, 1]

            total_subduction_zone_length_kms = 0
            for i, segment in enumerate(trench_arcseg):
                earth_radius = _tools.geocentric_radius(trench_pt_lat[i]) / 1e3
                total_subduction_zone_length_kms += np.deg2rad(segment) * earth_radius

            return total_subduction_zone_length_kms

        else:
            resolved_topologies = []
            shared_boundary_sections = []
            pygplates.resolve_topologies(
                self.topology_features,
                self.rotation_model,
                resolved_topologies,
                time,
                shared_boundary_sections,
            )

            total_subduction_zone_length_kms = 0.0
            for shared_boundary_section in shared_boundary_sections:
                if (
                    shared_boundary_section.get_feature().get_feature_type()
                    != pygplates.FeatureType.gpml_subduction_zone
                ):
                    continue
                for (
                    shared_sub_segment
                ) in shared_boundary_section.get_shared_sub_segments():
                    clat, clon = (
                        shared_sub_segment.get_resolved_geometry()
                        .get_centroid()
                        .to_lat_lon()
                    )
                    earth_radius = _tools.geocentric_radius(clat) / 1e3
                    total_subduction_zone_length_kms += (
                        shared_sub_segment.get_resolved_geometry().get_arc_length()
                        * earth_radius
                    )

            return total_subduction_zone_length_kms

    def total_continental_arc_length(
        self,
        time,
        continental_grid,
        trench_arc_distance,
        ignore_warnings=True,
    ):
        """Calculates the total length of all global continental arcs (km) at the specified geological time (Ma).

        Uses Plate Tectonic Tools' `subduction_convergence` workflow to sample a given plate model's trench features into
        point features and obtain their subduction polarities. The resolved points are projected out by the `trench_arc_distance`
        and their new locations are linearly interpolated onto the supplied `continental_grid`. If the projected trench
        points lie in the grid, they are considered continental arc points, and their arc segment lengths are appended
        to the total continental arc length for the specified `time`. The total length is scaled to kilometres using the geocentric
        Earth radius.

        Parameters
        ----------
        time : int
            The geological time at which to calculate total continental arc lengths.
        continental_grid: Raster, array_like, or str
            The continental grid used to identify continental arc points. Must
            be convertible to `Raster`. For an array, a global extent is
            assumed [-180,180,-90,90]. For a filename, the extent is obtained
            from the file.
        trench_arc_distance : float
            The trench-to-arc distance (in kilometres) to project sampled trench points out by in the direction of their
            subduction polarities.
        ignore_warnings : bool, default=True
            Choose whether to ignore warning messages from PTT's subduction_convergence workflow that alerts the user of
            subduction sub-segments that are ignored due to unidentified polarities and/or subducting plates.

        Returns
        -------
        total_continental_arc_length_kms : float
            The continental arc length (in km) at the specified time.
        """
        from . import grids as _grids

        if isinstance(continental_grid, _grids.Raster):
            graster = continental_grid
        elif isinstance(continental_grid, str):
            # Process the continental grid directory
            graster = _grids.Raster(
                data=continental_grid,
                realign=True,
                time=float(time),
            )
        else:
            # Process the masked continental grid
            try:
                continental_grid = np.array(continental_grid)
                graster = _grids.Raster(
                    data=continental_grid,
                    extent=[-180, 180, -90, 90],
                    time=float(time),
                )
            except Exception as e:
                raise TypeError(
                    "Invalid type for `continental_grid` (must be Raster,"
                    + " str, or array_like)"
                ) from e
        if (time != graster.time) and (not ignore_warnings):
            raise RuntimeWarning(
                "`continental_grid.time` ({}) ".format(graster.time)
                + "does not match `time` ({})".format(time)
            )

        # Obtain trench data with Plate Tectonic Tools
        trench_data = self.tessellate_subduction_zones(
            time, ignore_warnings=ignore_warnings
        )

        # Extract trench data
        trench_normal_azimuthal_angle = trench_data[:, 7]
        trench_arcseg = trench_data[:, 6]
        trench_pt_lon = trench_data[:, 0]
        trench_pt_lat = trench_data[:, 1]

        # Modify the trench-arc distance using the geocentric radius
        arc_distance = trench_arc_distance / (
            _tools.geocentric_radius(trench_pt_lat) / 1000
        )

        # Project trench points out along trench-arc distance, and obtain their new lat-lon coordinates
        dlon = arc_distance * np.sin(np.radians(trench_normal_azimuthal_angle))
        dlat = arc_distance * np.cos(np.radians(trench_normal_azimuthal_angle))
        ilon = trench_pt_lon + np.degrees(dlon)
        ilat = trench_pt_lat + np.degrees(dlat)

        # Linearly interpolate projected points onto continental grids, and collect the indices of points that lie
        # within the grids.
        sampled_points = graster.interpolate(
            ilon,
            ilat,
            method="linear",
            return_indices=False,
        )
        continental_indices = np.where(sampled_points > 0)
        point_lats = ilat[continental_indices]
        point_radii = _tools.geocentric_radius(point_lats) * 1.0e-3  # km
        segment_arclens = np.deg2rad(trench_arcseg[continental_indices])
        segment_lengths = point_radii * segment_arclens
        return np.sum(segment_lengths)

    def tessellate_mid_ocean_ridges(
        self,
        time,
        tessellation_threshold_radians=0.001,
        ignore_warnings=False,
        return_geodataframe=False,
        **kwargs
    ):
        """Samples points along resolved spreading features (e.g. mid-ocean ridges) and calculates spreading rates and
        lengths of ridge segments at a particular geological time.

        Resolves topologies at `time`, tessellates all resolved spreading features to within 'tessellation_threshold_radians'
        radians. Returns a 4-column vertically stacked tuple with the following data.

        * Col. 0 - longitude of sampled ridge point
        * Col. 1 - latitude of sampled ridge point
        * Col. 2 - spreading velocity magnitude (in cm/yr)
        * Col. 3 - length of arc segment (in degrees) that current point is on

        All spreading feature types are considered. The transform segments of spreading features are ignored.
        Note: by default, the function assumes that a segment can deviate 45 degrees from the stage pole before it is
        considered a transform segment.

        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query subduction convergence.

        tessellation_threshold_radians : float, default=0.001
            The threshold sampling distance along the subducting trench (in radians).

        ignore_warnings : bool, default=False
            Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow.

        Returns
        -------
        ridge_data : a list of vertically-stacked tuples
            The results for all tessellated points sampled along the trench.
            The size of the returned list is equal to the number of tessellated points.
            Each tuple in the list corresponds to a tessellated point and has the following tuple items:

            * longitude of sampled point
            * latitude of sampled point
            * spreading velocity magnitude (in cm/yr)
            * length of arc segment (in degrees) that current point is on
        """
        from . import ptt as _ptt

        anchor_plate_id = kwargs.pop("anchor_plate_id", self.anchor_plate_id)

        if ignore_warnings:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                spreading_feature_types = [pygplates.FeatureType.gpml_mid_ocean_ridge]
                ridge_data = _ptt.ridge_spreading_rate.spreading_rates(
                    self.rotation_model,
                    self.topology_features,
                    float(time),
                    tessellation_threshold_radians,
                    spreading_feature_types,
                    anchor_plate_id=anchor_plate_id,
                    **kwargs
                )

        else:
            spreading_feature_types = [pygplates.FeatureType.gpml_mid_ocean_ridge]
            ridge_data = _ptt.ridge_spreading_rate.spreading_rates(
                self.rotation_model,
                self.topology_features,
                float(time),
                tessellation_threshold_radians,
                spreading_feature_types,
                anchor_plate_id=anchor_plate_id,
                **kwargs
            )

        if not ridge_data:
            # the _ptt.ridge_spreading_rate.spreading_rates might return None
            return

        ridge_data = np.vstack(ridge_data)

        if return_geodataframe:
            import geopandas as gpd
            from shapely import geometry

            points = [
                geometry.Point(lon, lat)
                for lon, lat in zip(ridge_data[:, 0], ridge_data[:, 1])
            ]
            gdf = gpd.GeoDataFrame(
                {
                    "geometry": points,
                    "velocity (cm/yr)": ridge_data[:, 2],
                    "length (degrees)": ridge_data[:, 3],
                },
                geometry="geometry",
            )
            return gdf

        else:
            return ridge_data

    def total_ridge_length(self, time, use_ptt=False, ignore_warnings=False):
        """Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

        if `use_ptt` is True

        Uses Plate Tectonic Tools' `ridge_spreading_rate` workflow to calculate ridge segment lengths. Scales lengths to
        kilometres using the geocentric radius.

        Otherwise

        Resolves topology features of the PlateReconstruction model and extracts their shared boundary sections.
        The lengths of each GPML mid-ocean ridge shared boundary section are appended to the total ridge length.
        Scales lengths to kilometres using the geocentric radius.


        Parameters
        ----------
        time : int
            The geological time at which to calculate total mid-ocean ridge lengths.
        use_ptt : bool, default=False
            If set to `True`, the PTT method is used.
        ignore_warnings : bool, default=False
            Choose whether to ignore warning messages from PTT's `ridge_spreading_rate` workflow.

        Raises
        ------
        ValueError
            If neither `use_pygplates` or `use_ptt` have been set to `True`.

        Returns
        -------
        total_ridge_length_kms : float
            The total length of global mid-ocean ridges (in kilometres) at the specified time.
        """
        from . import ptt as _ptt

        if use_ptt is True:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                ridge_data = self.tessellate_mid_ocean_ridges(time)

            ridge_arcseg = ridge_data[:, 3]
            ridge_pt_lat = ridge_data[:, 1]

            total_ridge_length_kms = 0
            for i, segment in enumerate(ridge_arcseg):
                earth_radius = _tools.geocentric_radius(ridge_pt_lat[i]) / 1e3
                total_ridge_length_kms += np.deg2rad(segment) * earth_radius

            return total_ridge_length_kms

        else:
            resolved_topologies = []
            shared_boundary_sections = []
            pygplates.resolve_topologies(
                self.topology_features,
                self.rotation_model,
                resolved_topologies,
                time,
                shared_boundary_sections,
            )

            total_ridge_length_kms = 0.0
            for shared_boundary_section in shared_boundary_sections:
                if (
                    shared_boundary_section.get_feature().get_feature_type()
                    != pygplates.FeatureType.gpml_mid_ocean_ridge
                ):
                    continue
                for (
                    shared_sub_segment
                ) in shared_boundary_section.get_shared_sub_segments():
                    clat, clon = (
                        shared_sub_segment.get_resolved_geometry()
                        .get_centroid()
                        .to_lat_lon()
                    )
                    earth_radius = _tools.geocentric_radius(clat) / 1e3
                    total_ridge_length_kms += (
                        shared_sub_segment.get_resolved_geometry().get_arc_length()
                        * earth_radius
                    )

            return total_ridge_length_kms

    def reconstruct(
        self, feature, to_time, from_time=0, anchor_plate_id=None, **kwargs
    ):
        """Reconstructs regular geological features, motion paths or flowlines to a specific geological time.

        Parameters
        ----------
        feature : str, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>
            The geological features to reconstruct. Can be provided as a feature collection, or filename,
            or feature, or sequence of features, or a sequence (eg, a list or tuple) of any combination of
            those four types.

        to_time : float, or :class:`GeoTimeInstant`
            The specific geological time to reconstruct to.

        from_time : float, default=0
            The specific geological time to reconstruct from. By default, this is set to present day. Raises
            `NotImplementedError` if `from_time` is not set to 0.0 Ma (present day).

        anchor_plate_id : int, default=None
            Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
            with respect to the absolute reference frame (anchor_plate_id = 0), like a stationary object in the mantle,
            unless otherwise specified.

        **reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
            The specific reconstruction type to generate based on input feature geometry type. Can be provided as
            pygplates.ReconstructType.feature_geometry to only reconstruct regular feature geometries, or
            pygplates.ReconstructType.motion_path to only reconstruct motion path features, or
            pygplates.ReconstructType.flowline to only reconstruct flowline features.
            Generates :class:`reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:`reconstructed
            motion paths<ReconstructedMotionPath>’, or :class:`reconstructed flowlines<ReconstructedFlowline>’ respectively.

        **group_with_feature : bool, default=False
            Used to group reconstructed geometries with their features. This can be useful when a feature has more than one
            geometry and hence more than one reconstructed geometry. The output *reconstructed_geometries* then becomes a
            list of tuples where each tuple contains a :class:`feature<Feature>` and a ``list`` of reconstructed geometries.
            Note: this keyword argument only applies when *reconstructed_geometries* is a list because exported files are
            always grouped with their features. This is applicable to all ReconstructType features.

        **export_wrap_to_dateline : bool, default=True
            Wrap/clip reconstructed geometries to the dateline.

        Returns
        -------
        reconstructed_features : list
            Reconstructed geological features (generated by the reconstruction) are appended to the list.
            The reconstructed geometries are output in the same order as that of their respective input features (in the
            parameter “features”). The order across input feature collections is also retained. This happens regardless
            of whether *features* and *reconstructed_features* include files or not. Note: if keyword argument
            group_with_feature=True then the list contains tuples that group each :class:`feature<Feature>` with a list
            of its reconstructed geometries.

        Raises
        ------
        NotImplementedError
            if the starting time for reconstruction `from_time` is not equal to 0.0.
        """
        from_time, to_time = float(from_time), float(to_time)

        reconstructed_features = []

        if not anchor_plate_id:
            anchor_plate_id = self.anchor_plate_id

        pygplates.reconstruct(
            feature,
            self.rotation_model,
            reconstructed_features,
            to_time,
            anchor_plate_id=anchor_plate_id,
            **kwargs
        )
        return reconstructed_features

    def get_point_velocities(self, lons, lats, time, delta_time=1.0):
        """Generates a velocity domain feature collection, resolves them into points, and calculates the north and east
        components of the velocity vector for each point in the domain at a particular geological `time`.

        Notes
        -----
        Velocity domain feature collections are MeshNode-type features. These are produced from `lons` and `lats` pairs
        represented as multi-point geometries (projections onto the surface of the unit length sphere). These features are
        resolved into  domain points and assigned plate IDs which are used to obtain the equivalent stage rotations of
        identified tectonic plates over a time interval (`delta_time`). Each velocity domain point and its stage rotation
        are used to calculate the point's plate velocity at a particular `time`. Obtained velocities for each domain point
        are represented in the north-east-down coordinate system.

        Parameters
        ----------
        lons : array
            A 1D array of point data's longitudes.

        lats : array
            A 1D array of point data's latitudes.

        time : float
            The specific geological time (Ma) at which to calculate plate velocities.

        delta_time : float, default=1.0
            The time increment used for generating partitioning plate stage rotations. 1.0Ma by default.

        Returns
        -------
        all_velocities : 1D list of tuples
            For each velocity domain feature point, a tuple of (north, east, down) velocity components is generated and
            appended to a list of velocity data. The length of `all_velocities` is equivalent to the number of domain points
            resolved from the lat-lon array parameters.
        """
        # Add points to a multipoint geometry

        time = float(time)

        multi_point = pygplates.MultiPointOnSphere(
            [(float(lat), float(lon)) for lat, lon in zip(lats, lons)]
        )

        # Create a feature containing the multipoint feature, and defined as MeshNode type
        meshnode_feature = pygplates.Feature(
            pygplates.FeatureType.create_from_qualified_string("gpml:MeshNode")
        )
        meshnode_feature.set_geometry(multi_point)
        meshnode_feature.set_name("Velocity Mesh Nodes from pygplates")

        velocity_domain_features = pygplates.FeatureCollection(meshnode_feature)

        # NB: at this point, the feature could be written to a file using
        # output_feature_collection.write('myfilename.gpmlz')

        # All domain points and associated (magnitude, azimuth, inclination) velocities for the current time.
        all_domain_points = []
        all_velocities = []

        # Partition our velocity domain features into our topological plate polygons at the current 'time'.
        plate_partitioner = pygplates.PlatePartitioner(
            self.topology_features, self.rotation_model, time
        )

        for velocity_domain_feature in velocity_domain_features:
            # A velocity domain feature usually has a single geometry but we'll assume it can be any number.
            # Iterate over them all.
            for velocity_domain_geometry in velocity_domain_feature.get_geometries():
                for velocity_domain_point in velocity_domain_geometry.get_points():
                    all_domain_points.append(velocity_domain_point)

                    partitioning_plate = plate_partitioner.partition_point(
                        velocity_domain_point
                    )
                    if partitioning_plate:
                        # We need the newly assigned plate ID
                        # to get the equivalent stage rotation of that tectonic plate.
                        partitioning_plate_id = (
                            partitioning_plate.get_feature().get_reconstruction_plate_id()
                        )

                        # Get the stage rotation of partitioning plate from 'time + delta_time' to 'time'.
                        equivalent_stage_rotation = self.rotation_model.get_rotation(
                            time, partitioning_plate_id, time + delta_time
                        )

                        # Calculate velocity at the velocity domain point.
                        # This is from 'time + delta_time' to 'time' on the partitioning plate.
                        velocity_vectors = pygplates.calculate_velocities(
                            [velocity_domain_point],
                            equivalent_stage_rotation,
                            delta_time,
                        )

                        # Convert global 3D velocity vectors to local (magnitude, azimuth, inclination) tuples
                        # (one tuple per point).
                        velocities = pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                            [velocity_domain_point], velocity_vectors
                        )
                        all_velocities.append(
                            (velocities[0].get_x(), velocities[0].get_y())
                        )

                    else:
                        all_velocities.append((0, 0))

        return np.array(all_velocities)

    def create_motion_path(
        self,
        lons,
        lats,
        time_array,
        plate_id=None,
        anchor_plate_id=None,
        return_rate_of_motion=False,
    ):
        """Create a path of points to mark the trajectory of a plate's motion
        through geological time.

        Parameters
        ----------
        lons : arr
            An array containing the longitudes of seed points on a plate in motion.
        lats : arr
            An array containing the latitudes of seed points on a plate in motion.
        time_array : arr
            An array of reconstruction times at which to determine the trajectory
            of a point on a plate. For example:

                import numpy as np
                min_time = 30
                max_time = 100
                time_step = 2.5
                time_array = np.arange(min_time, max_time + time_step, time_step)

        plate_id : int, default=None
            The ID of the moving plate. If this is not passed, the plate ID of the
            seed points are ascertained using pygplates' `PlatePartitioner`.
        anchor_plate_id : int, default=0
            The ID of the anchor plate.
        return_rate_of_motion : bool, default=False
            Choose whether to return the rate of plate motion through time for each

        Returns
        -------
        rlons : ndarray
            An n-dimensional array with columns containing the longitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        rlats : ndarray
            An n-dimensional array with columns containing the latitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        StepTimes
        StepRates

        Examples
        --------
        To access the latitudes and longitudes of each seed point's motion path:

            for i in np.arange(0,len(seed_points)):
                current_lons = lon[:,i]
                current_lats = lat[:,i]
        """
        lons = np.atleast_1d(lons)
        lats = np.atleast_1d(lats)
        time_array = np.atleast_1d(time_array)

        # ndarrays to fill with reconstructed points and
        # rates of motion (if requested)
        rlons = np.empty((len(time_array), len(lons)))
        rlats = np.empty((len(time_array), len(lons)))

        if plate_id is None:
            query_plate_id = True
        else:
            query_plate_id = False
            plate_ids = np.ones(len(lons), dtype=int) * plate_id

        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        seed_points = zip(lats, lons)
        if return_rate_of_motion is True:
            StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
            StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))
        for i, lat_lon in enumerate(seed_points):
            seed_points_at_digitisation_time = pygplates.PointOnSphere(
                pygplates.LatLonPoint(float(lat_lon[0]), float(lat_lon[1]))
            )
            # Allocate the present-day plate ID to the PointOnSphere if
            # it was not given.
            if query_plate_id:
                plate_id = _tools.plate_partitioner_for_point(
                    lat_lon, self.topology_features, self.rotation_model
                )
            else:
                plate_id = plate_ids[i]

            # Create the motion path feature. enforce float and int for C++ signature.
            motion_path_feature = pygplates.Feature.create_motion_path(
                seed_points_at_digitisation_time,
                time_array,
                valid_time=(time_array.max(), time_array.min()),
                relative_plate=int(anchor_plate_id),
                reconstruction_plate_id=int(plate_id),
            )

            reconstructed_motion_paths = self.reconstruct(
                motion_path_feature,
                to_time=0,
                reconstruct_type=pygplates.ReconstructType.motion_path,
                anchor_plate_id=int(anchor_plate_id),
            )
            # Turn motion paths in to lat-lon coordinates
            for reconstructed_motion_path in reconstructed_motion_paths:
                trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

            lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

            rlons[:, i] = lon
            rlats[:, i] = lat

            # Obtain step-plot coordinates for rate of motion
            if return_rate_of_motion is True:
                # Get timestep
                TimeStep = []
                for j in range(len(time_array) - 1):
                    diff = time_array[j + 1] - time_array[j]
                    TimeStep.append(diff)

                # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
                # plate relative to the fixed plate in each time step
                Dist = []
                for reconstructed_motion_path in reconstructed_motion_paths:
                    for (
                        segment
                    ) in reconstructed_motion_path.get_motion_path().get_segments():
                        Dist.append(
                            segment.get_arc_length()
                            * _tools.geocentric_radius(
                                segment.get_start_point().to_lat_lon()[0]
                            )
                            / 1e3
                        )

                # Note that the motion path coordinates come out starting with the oldest time and working forwards
                # So, to match our 'times' array, we flip the order
                Dist = np.flipud(Dist)

                # Get rate of motion as distance per Myr
                Rate = np.asarray(Dist) / TimeStep

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

                # Obseleted by Lauren's changes above (though it is more efficient)
                # multiply arc length of the motion path segment by a latitude-dependent Earth radius
                # use latitude of the segment start point
                # distance.append( segment.get_arc_length() * _tools.geocentric_radius(segment.get_start_point().to_lat_lon()[0]) / 1e3)
                # rate = np.asarray(distance)/np.diff(time_array)
                # rates[:,i] = np.flipud(rate)
                # rates *= 0.1 # cm/yr

        if return_rate_of_motion is True:
            return (
                np.squeeze(rlons),
                np.squeeze(rlats),
                np.squeeze(StepTimes),
                np.squeeze(StepRates),
            )
        else:
            return np.squeeze(rlons), np.squeeze(rlats)

    def create_flowline(
        self,
        lons,
        lats,
        time_array,
        left_plate_ID,
        right_plate_ID,
        return_rate_of_motion=False,
    ):
        """Create a path of points to track plate motion away from
        spreading ridges over time using half-stage rotations.

        Parameters
        ----------
        lons : arr
            An array of longitudes of points along spreading ridges.
        lats : arr
            An array of latitudes of points along spreading ridges.
        time_array : arr
            A list of times to obtain seed point locations at.
        left_plate_ID : int
            The plate ID of the polygon to the left of the spreading
            ridge.
        right_plate_ID : int
            The plate ID of the polygon to the right of the spreading
            ridge.
        return_rate_of_motion : bool, default False
            Choose whether to return a step time and step rate array
            for a step plot of motion.

        Returns
        -------
        left_lon : ndarray
            The longitudes of the __left__ flowline for n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        left_lat : ndarray
            The latitudes of the __left__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lon : ndarray
            The longitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lat : ndarray
            The latitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.

        Examples
        --------
        To access the ith seed point's left and right latitudes and
        longitudes:

            for i in np.arange(0,len(seed_points)):
                left_flowline_longitudes = left_lon[:,i]
                left_flowline_latitudes = left_lat[:,i]
                right_flowline_longitudes = right_lon[:,i]
                right_flowline_latitudes = right_lat[:,i]
        """
        lats = np.atleast_1d(lats)
        lons = np.atleast_1d(lons)
        time_array = np.atleast_1d(time_array)

        seed_points = list(zip(lats, lons))
        multi_point = pygplates.MultiPointOnSphere(seed_points)

        start = 0
        if time_array[0] != 0:
            start = 1
            time_array = np.hstack([[0], time_array])

        # Create the flowline feature
        flowline_feature = pygplates.Feature.create_flowline(
            multi_point,
            time_array.tolist(),
            valid_time=(time_array.max(), time_array.min()),
            left_plate=left_plate_ID,
            right_plate=right_plate_ID,
        )

        # reconstruct the flowline in present-day coordinates
        reconstructed_flowlines = self.reconstruct(
            flowline_feature,
            to_time=0,
            reconstruct_type=pygplates.ReconstructType.flowline,
        )

        # Wrap things to the dateline, to avoid plotting artefacts.
        date_line_wrapper = pygplates.DateLineWrapper()

        # Create lat-lon ndarrays to store the left and right lats and lons of flowlines
        left_lon = np.empty((len(time_array), len(lons)))
        left_lat = np.empty((len(time_array), len(lons)))
        right_lon = np.empty((len(time_array), len(lons)))
        right_lat = np.empty((len(time_array), len(lons)))
        StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
        StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))

        # Iterate over the reconstructed flowlines. Each seed point results in a 'left' and 'right' flowline
        for i, reconstructed_flowline in enumerate(reconstructed_flowlines):
            # Get the points for the left flowline only
            left_latlon = reconstructed_flowline.get_left_flowline().to_lat_lon_array()
            left_lon[:, i] = left_latlon[:, 1]
            left_lat[:, i] = left_latlon[:, 0]

            # Repeat for the right flowline points
            right_latlon = (
                reconstructed_flowline.get_right_flowline().to_lat_lon_array()
            )
            right_lon[:, i] = right_latlon[:, 1]
            right_lat[:, i] = right_latlon[:, 0]

        if return_rate_of_motion:
            for i, reconstructed_motion_path in enumerate(reconstructed_flowlines):
                distance = []
                for (
                    segment
                ) in reconstructed_motion_path.get_left_flowline().get_segments():
                    distance.append(
                        segment.get_arc_length()
                        * _tools.geocentric_radius(
                            segment.get_start_point().to_lat_lon()[0]
                        )
                        / 1e3
                    )

                # Get rate of motion as distance per Myr
                # Need to multiply rate by 2, since flowlines give us half-spreading rate
                time_step = time_array[1] - time_array[0]
                Rate = (
                    np.asarray(distance) / time_step
                ) * 2  # since we created the flowline at X increment

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

            return (
                left_lon[start:],
                left_lat[start:],
                right_lon[start:],
                right_lat[start:],
                StepTimes,
                StepRates,
            )

        else:
            return (
                left_lon[start:],
                left_lat[start:],
                right_lon[start:],
                right_lat[start:],
            )

Instance variables

var anchor_plate_id

Anchor plate ID for reconstruction. Must be an integer >= 0.

Expand source code
@property
def anchor_plate_id(self):
    """Anchor plate ID for reconstruction. Must be an integer >= 0."""
    return self._anchor_plate_id

Methods

def create_flowline(self, lons, lats, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False)

Create a path of points to track plate motion away from spreading ridges over time using half-stage rotations.

Parameters

lons : arr
An array of longitudes of points along spreading ridges.
lats : arr
An array of latitudes of points along spreading ridges.
time_array : arr
A list of times to obtain seed point locations at.
left_plate_ID : int
The plate ID of the polygon to the left of the spreading ridge.
right_plate_ID : int
The plate ID of the polygon to the right of the spreading ridge.
return_rate_of_motion : bool, default False
Choose whether to return a step time and step rate array for a step plot of motion.

Returns

left_lon : ndarray
The longitudes of the left flowline for n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
left_lat : ndarray
The latitudes of the left flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lon : ndarray
The longitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lat : ndarray
The latitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.

Examples

To access the ith seed point's left and right latitudes and longitudes:

for i in np.arange(0,len(seed_points)):
    left_flowline_longitudes = left_lon[:,i]
    left_flowline_latitudes = left_lat[:,i]
    right_flowline_longitudes = right_lon[:,i]
    right_flowline_latitudes = right_lat[:,i]
Expand source code
def create_flowline(
    self,
    lons,
    lats,
    time_array,
    left_plate_ID,
    right_plate_ID,
    return_rate_of_motion=False,
):
    """Create a path of points to track plate motion away from
    spreading ridges over time using half-stage rotations.

    Parameters
    ----------
    lons : arr
        An array of longitudes of points along spreading ridges.
    lats : arr
        An array of latitudes of points along spreading ridges.
    time_array : arr
        A list of times to obtain seed point locations at.
    left_plate_ID : int
        The plate ID of the polygon to the left of the spreading
        ridge.
    right_plate_ID : int
        The plate ID of the polygon to the right of the spreading
        ridge.
    return_rate_of_motion : bool, default False
        Choose whether to return a step time and step rate array
        for a step plot of motion.

    Returns
    -------
    left_lon : ndarray
        The longitudes of the __left__ flowline for n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    left_lat : ndarray
        The latitudes of the __left__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    right_lon : ndarray
        The longitudes of the __right__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    right_lat : ndarray
        The latitudes of the __right__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.

    Examples
    --------
    To access the ith seed point's left and right latitudes and
    longitudes:

        for i in np.arange(0,len(seed_points)):
            left_flowline_longitudes = left_lon[:,i]
            left_flowline_latitudes = left_lat[:,i]
            right_flowline_longitudes = right_lon[:,i]
            right_flowline_latitudes = right_lat[:,i]
    """
    lats = np.atleast_1d(lats)
    lons = np.atleast_1d(lons)
    time_array = np.atleast_1d(time_array)

    seed_points = list(zip(lats, lons))
    multi_point = pygplates.MultiPointOnSphere(seed_points)

    start = 0
    if time_array[0] != 0:
        start = 1
        time_array = np.hstack([[0], time_array])

    # Create the flowline feature
    flowline_feature = pygplates.Feature.create_flowline(
        multi_point,
        time_array.tolist(),
        valid_time=(time_array.max(), time_array.min()),
        left_plate=left_plate_ID,
        right_plate=right_plate_ID,
    )

    # reconstruct the flowline in present-day coordinates
    reconstructed_flowlines = self.reconstruct(
        flowline_feature,
        to_time=0,
        reconstruct_type=pygplates.ReconstructType.flowline,
    )

    # Wrap things to the dateline, to avoid plotting artefacts.
    date_line_wrapper = pygplates.DateLineWrapper()

    # Create lat-lon ndarrays to store the left and right lats and lons of flowlines
    left_lon = np.empty((len(time_array), len(lons)))
    left_lat = np.empty((len(time_array), len(lons)))
    right_lon = np.empty((len(time_array), len(lons)))
    right_lat = np.empty((len(time_array), len(lons)))
    StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
    StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))

    # Iterate over the reconstructed flowlines. Each seed point results in a 'left' and 'right' flowline
    for i, reconstructed_flowline in enumerate(reconstructed_flowlines):
        # Get the points for the left flowline only
        left_latlon = reconstructed_flowline.get_left_flowline().to_lat_lon_array()
        left_lon[:, i] = left_latlon[:, 1]
        left_lat[:, i] = left_latlon[:, 0]

        # Repeat for the right flowline points
        right_latlon = (
            reconstructed_flowline.get_right_flowline().to_lat_lon_array()
        )
        right_lon[:, i] = right_latlon[:, 1]
        right_lat[:, i] = right_latlon[:, 0]

    if return_rate_of_motion:
        for i, reconstructed_motion_path in enumerate(reconstructed_flowlines):
            distance = []
            for (
                segment
            ) in reconstructed_motion_path.get_left_flowline().get_segments():
                distance.append(
                    segment.get_arc_length()
                    * _tools.geocentric_radius(
                        segment.get_start_point().to_lat_lon()[0]
                    )
                    / 1e3
                )

            # Get rate of motion as distance per Myr
            # Need to multiply rate by 2, since flowlines give us half-spreading rate
            time_step = time_array[1] - time_array[0]
            Rate = (
                np.asarray(distance) / time_step
            ) * 2  # since we created the flowline at X increment

            # Manipulate arrays to get a step plot
            StepRate = np.zeros(len(Rate) * 2)
            StepRate[::2] = Rate
            StepRate[1::2] = Rate

            StepTime = np.zeros(len(Rate) * 2)
            StepTime[::2] = time_array[:-1]
            StepTime[1::2] = time_array[1:]

            # Append the nth point's step time and step rate coordinates to the ndarray
            StepTimes[:, i] = StepTime
            StepRates[:, i] = StepRate * 0.1  # cm/yr

        return (
            left_lon[start:],
            left_lat[start:],
            right_lon[start:],
            right_lat[start:],
            StepTimes,
            StepRates,
        )

    else:
        return (
            left_lon[start:],
            left_lat[start:],
            right_lon[start:],
            right_lat[start:],
        )
def create_motion_path(self, lons, lats, time_array, plate_id=None, anchor_plate_id=None, return_rate_of_motion=False)

Create a path of points to mark the trajectory of a plate's motion through geological time.

Parameters

lons : arr
An array containing the longitudes of seed points on a plate in motion.
lats : arr
An array containing the latitudes of seed points on a plate in motion.
time_array : arr
An array of reconstruction times at which to determine the trajectory of a point on a plate. For example:
import numpy as np
min_time = 30
max_time = 100
time_step = 2.5
time_array = np.arange(min_time, max_time + time_step, time_step)
plate_id : int, default=None
The ID of the moving plate. If this is not passed, the plate ID of the seed points are ascertained using pygplates' PlatePartitioner.
anchor_plate_id : int, default=0
The ID of the anchor plate.
return_rate_of_motion : bool, default=False
Choose whether to return the rate of plate motion through time for each

Returns

rlons : ndarray
An n-dimensional array with columns containing the longitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
rlats : ndarray
An n-dimensional array with columns containing the latitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
StepTimes
 
StepRates
 

Examples

To access the latitudes and longitudes of each seed point's motion path:

for i in np.arange(0,len(seed_points)):
    current_lons = lon[:,i]
    current_lats = lat[:,i]
Expand source code
def create_motion_path(
    self,
    lons,
    lats,
    time_array,
    plate_id=None,
    anchor_plate_id=None,
    return_rate_of_motion=False,
):
    """Create a path of points to mark the trajectory of a plate's motion
    through geological time.

    Parameters
    ----------
    lons : arr
        An array containing the longitudes of seed points on a plate in motion.
    lats : arr
        An array containing the latitudes of seed points on a plate in motion.
    time_array : arr
        An array of reconstruction times at which to determine the trajectory
        of a point on a plate. For example:

            import numpy as np
            min_time = 30
            max_time = 100
            time_step = 2.5
            time_array = np.arange(min_time, max_time + time_step, time_step)

    plate_id : int, default=None
        The ID of the moving plate. If this is not passed, the plate ID of the
        seed points are ascertained using pygplates' `PlatePartitioner`.
    anchor_plate_id : int, default=0
        The ID of the anchor plate.
    return_rate_of_motion : bool, default=False
        Choose whether to return the rate of plate motion through time for each

    Returns
    -------
    rlons : ndarray
        An n-dimensional array with columns containing the longitudes of
        the seed points at each timestep in `time_array`. There are n
        columns for n seed points.
    rlats : ndarray
        An n-dimensional array with columns containing the latitudes of
        the seed points at each timestep in `time_array`. There are n
        columns for n seed points.
    StepTimes
    StepRates

    Examples
    --------
    To access the latitudes and longitudes of each seed point's motion path:

        for i in np.arange(0,len(seed_points)):
            current_lons = lon[:,i]
            current_lats = lat[:,i]
    """
    lons = np.atleast_1d(lons)
    lats = np.atleast_1d(lats)
    time_array = np.atleast_1d(time_array)

    # ndarrays to fill with reconstructed points and
    # rates of motion (if requested)
    rlons = np.empty((len(time_array), len(lons)))
    rlats = np.empty((len(time_array), len(lons)))

    if plate_id is None:
        query_plate_id = True
    else:
        query_plate_id = False
        plate_ids = np.ones(len(lons), dtype=int) * plate_id

    if anchor_plate_id is None:
        anchor_plate_id = self.anchor_plate_id

    seed_points = zip(lats, lons)
    if return_rate_of_motion is True:
        StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
        StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))
    for i, lat_lon in enumerate(seed_points):
        seed_points_at_digitisation_time = pygplates.PointOnSphere(
            pygplates.LatLonPoint(float(lat_lon[0]), float(lat_lon[1]))
        )
        # Allocate the present-day plate ID to the PointOnSphere if
        # it was not given.
        if query_plate_id:
            plate_id = _tools.plate_partitioner_for_point(
                lat_lon, self.topology_features, self.rotation_model
            )
        else:
            plate_id = plate_ids[i]

        # Create the motion path feature. enforce float and int for C++ signature.
        motion_path_feature = pygplates.Feature.create_motion_path(
            seed_points_at_digitisation_time,
            time_array,
            valid_time=(time_array.max(), time_array.min()),
            relative_plate=int(anchor_plate_id),
            reconstruction_plate_id=int(plate_id),
        )

        reconstructed_motion_paths = self.reconstruct(
            motion_path_feature,
            to_time=0,
            reconstruct_type=pygplates.ReconstructType.motion_path,
            anchor_plate_id=int(anchor_plate_id),
        )
        # Turn motion paths in to lat-lon coordinates
        for reconstructed_motion_path in reconstructed_motion_paths:
            trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

        lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

        rlons[:, i] = lon
        rlats[:, i] = lat

        # Obtain step-plot coordinates for rate of motion
        if return_rate_of_motion is True:
            # Get timestep
            TimeStep = []
            for j in range(len(time_array) - 1):
                diff = time_array[j + 1] - time_array[j]
                TimeStep.append(diff)

            # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
            # plate relative to the fixed plate in each time step
            Dist = []
            for reconstructed_motion_path in reconstructed_motion_paths:
                for (
                    segment
                ) in reconstructed_motion_path.get_motion_path().get_segments():
                    Dist.append(
                        segment.get_arc_length()
                        * _tools.geocentric_radius(
                            segment.get_start_point().to_lat_lon()[0]
                        )
                        / 1e3
                    )

            # Note that the motion path coordinates come out starting with the oldest time and working forwards
            # So, to match our 'times' array, we flip the order
            Dist = np.flipud(Dist)

            # Get rate of motion as distance per Myr
            Rate = np.asarray(Dist) / TimeStep

            # Manipulate arrays to get a step plot
            StepRate = np.zeros(len(Rate) * 2)
            StepRate[::2] = Rate
            StepRate[1::2] = Rate

            StepTime = np.zeros(len(Rate) * 2)
            StepTime[::2] = time_array[:-1]
            StepTime[1::2] = time_array[1:]

            # Append the nth point's step time and step rate coordinates to the ndarray
            StepTimes[:, i] = StepTime
            StepRates[:, i] = StepRate * 0.1  # cm/yr

            # Obseleted by Lauren's changes above (though it is more efficient)
            # multiply arc length of the motion path segment by a latitude-dependent Earth radius
            # use latitude of the segment start point
            # distance.append( segment.get_arc_length() * _tools.geocentric_radius(segment.get_start_point().to_lat_lon()[0]) / 1e3)
            # rate = np.asarray(distance)/np.diff(time_array)
            # rates[:,i] = np.flipud(rate)
            # rates *= 0.1 # cm/yr

    if return_rate_of_motion is True:
        return (
            np.squeeze(rlons),
            np.squeeze(rlats),
            np.squeeze(StepTimes),
            np.squeeze(StepRates),
        )
    else:
        return np.squeeze(rlons), np.squeeze(rlats)
def get_point_velocities(self, lons, lats, time, delta_time=1.0)

Generates a velocity domain feature collection, resolves them into points, and calculates the north and east components of the velocity vector for each point in the domain at a particular geological time.

Notes

Velocity domain feature collections are MeshNode-type features. These are produced from lons and lats pairs represented as multi-point geometries (projections onto the surface of the unit length sphere). These features are resolved into domain points and assigned plate IDs which are used to obtain the equivalent stage rotations of identified tectonic plates over a time interval (delta_time). Each velocity domain point and its stage rotation are used to calculate the point's plate velocity at a particular time. Obtained velocities for each domain point are represented in the north-east-down coordinate system.

Parameters

lons : array
A 1D array of point data's longitudes.
lats : array
A 1D array of point data's latitudes.
time : float
The specific geological time (Ma) at which to calculate plate velocities.
delta_time : float, default=1.0
The time increment used for generating partitioning plate stage rotations. 1.0Ma by default.

Returns

all_velocities : 1D list of tuples
For each velocity domain feature point, a tuple of (north, east, down) velocity components is generated and appended to a list of velocity data. The length of all_velocities is equivalent to the number of domain points resolved from the lat-lon array parameters.
Expand source code
def get_point_velocities(self, lons, lats, time, delta_time=1.0):
    """Generates a velocity domain feature collection, resolves them into points, and calculates the north and east
    components of the velocity vector for each point in the domain at a particular geological `time`.

    Notes
    -----
    Velocity domain feature collections are MeshNode-type features. These are produced from `lons` and `lats` pairs
    represented as multi-point geometries (projections onto the surface of the unit length sphere). These features are
    resolved into  domain points and assigned plate IDs which are used to obtain the equivalent stage rotations of
    identified tectonic plates over a time interval (`delta_time`). Each velocity domain point and its stage rotation
    are used to calculate the point's plate velocity at a particular `time`. Obtained velocities for each domain point
    are represented in the north-east-down coordinate system.

    Parameters
    ----------
    lons : array
        A 1D array of point data's longitudes.

    lats : array
        A 1D array of point data's latitudes.

    time : float
        The specific geological time (Ma) at which to calculate plate velocities.

    delta_time : float, default=1.0
        The time increment used for generating partitioning plate stage rotations. 1.0Ma by default.

    Returns
    -------
    all_velocities : 1D list of tuples
        For each velocity domain feature point, a tuple of (north, east, down) velocity components is generated and
        appended to a list of velocity data. The length of `all_velocities` is equivalent to the number of domain points
        resolved from the lat-lon array parameters.
    """
    # Add points to a multipoint geometry

    time = float(time)

    multi_point = pygplates.MultiPointOnSphere(
        [(float(lat), float(lon)) for lat, lon in zip(lats, lons)]
    )

    # Create a feature containing the multipoint feature, and defined as MeshNode type
    meshnode_feature = pygplates.Feature(
        pygplates.FeatureType.create_from_qualified_string("gpml:MeshNode")
    )
    meshnode_feature.set_geometry(multi_point)
    meshnode_feature.set_name("Velocity Mesh Nodes from pygplates")

    velocity_domain_features = pygplates.FeatureCollection(meshnode_feature)

    # NB: at this point, the feature could be written to a file using
    # output_feature_collection.write('myfilename.gpmlz')

    # All domain points and associated (magnitude, azimuth, inclination) velocities for the current time.
    all_domain_points = []
    all_velocities = []

    # Partition our velocity domain features into our topological plate polygons at the current 'time'.
    plate_partitioner = pygplates.PlatePartitioner(
        self.topology_features, self.rotation_model, time
    )

    for velocity_domain_feature in velocity_domain_features:
        # A velocity domain feature usually has a single geometry but we'll assume it can be any number.
        # Iterate over them all.
        for velocity_domain_geometry in velocity_domain_feature.get_geometries():
            for velocity_domain_point in velocity_domain_geometry.get_points():
                all_domain_points.append(velocity_domain_point)

                partitioning_plate = plate_partitioner.partition_point(
                    velocity_domain_point
                )
                if partitioning_plate:
                    # We need the newly assigned plate ID
                    # to get the equivalent stage rotation of that tectonic plate.
                    partitioning_plate_id = (
                        partitioning_plate.get_feature().get_reconstruction_plate_id()
                    )

                    # Get the stage rotation of partitioning plate from 'time + delta_time' to 'time'.
                    equivalent_stage_rotation = self.rotation_model.get_rotation(
                        time, partitioning_plate_id, time + delta_time
                    )

                    # Calculate velocity at the velocity domain point.
                    # This is from 'time + delta_time' to 'time' on the partitioning plate.
                    velocity_vectors = pygplates.calculate_velocities(
                        [velocity_domain_point],
                        equivalent_stage_rotation,
                        delta_time,
                    )

                    # Convert global 3D velocity vectors to local (magnitude, azimuth, inclination) tuples
                    # (one tuple per point).
                    velocities = pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                        [velocity_domain_point], velocity_vectors
                    )
                    all_velocities.append(
                        (velocities[0].get_x(), velocities[0].get_y())
                    )

                else:
                    all_velocities.append((0, 0))

    return np.array(all_velocities)
def reconstruct(self, feature, to_time, from_time=0, anchor_plate_id=None, **kwargs)

Reconstructs regular geological features, motion paths or flowlines to a specific geological time.

Parameters

feature : str, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>
The geological features to reconstruct. Can be provided as a feature collection, or filename, or feature, or sequence of features, or a sequence (eg, a list or tuple) of any combination of those four types.
to_time : float, or :class:GeoTimeInstant``
The specific geological time to reconstruct to.
from_time : float, default=0
The specific geological time to reconstruct from. By default, this is set to present day. Raises NotImplementedError if from_time is not set to 0.0 Ma (present day).
anchor_plate_id : int, default=None
Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made with respect to the absolute reference frame (anchor_plate_id = 0), like a stationary object in the mantle, unless otherwise specified.
**reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
The specific reconstruction type to generate based on input feature geometry type. Can be provided as pygplates.ReconstructType.feature_geometry to only reconstruct regular feature geometries, or pygplates.ReconstructType.motion_path to only reconstruct motion path features, or pygplates.ReconstructType.flowline to only reconstruct flowline features. Generates :class:reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:reconstructed motion paths’, or :class:`reconstructed flowlines’ respectively.
**group_with_feature : bool, default=False
Used to group reconstructed geometries with their features. This can be useful when a feature has more than one geometry and hence more than one reconstructed geometry. The output reconstructed_geometries then becomes a list of tuples where each tuple contains a :class:feature<Feature> and a list of reconstructed geometries. Note: this keyword argument only applies when reconstructed_geometries is a list because exported files are always grouped with their features. This is applicable to all ReconstructType features.
**export_wrap_to_dateline : bool, default=True
Wrap/clip reconstructed geometries to the dateline.

Returns

reconstructed_features : list
Reconstructed geological features (generated by the reconstruction) are appended to the list. The reconstructed geometries are output in the same order as that of their respective input features (in the parameter “features”). The order across input feature collections is also retained. This happens regardless of whether features and reconstructed_features include files or not. Note: if keyword argument group_with_feature=True then the list contains tuples that group each :class:feature<Feature> with a list of its reconstructed geometries.

Raises

NotImplementedError
if the starting time for reconstruction from_time is not equal to 0.0.
Expand source code
def reconstruct(
    self, feature, to_time, from_time=0, anchor_plate_id=None, **kwargs
):
    """Reconstructs regular geological features, motion paths or flowlines to a specific geological time.

    Parameters
    ----------
    feature : str, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>
        The geological features to reconstruct. Can be provided as a feature collection, or filename,
        or feature, or sequence of features, or a sequence (eg, a list or tuple) of any combination of
        those four types.

    to_time : float, or :class:`GeoTimeInstant`
        The specific geological time to reconstruct to.

    from_time : float, default=0
        The specific geological time to reconstruct from. By default, this is set to present day. Raises
        `NotImplementedError` if `from_time` is not set to 0.0 Ma (present day).

    anchor_plate_id : int, default=None
        Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
        with respect to the absolute reference frame (anchor_plate_id = 0), like a stationary object in the mantle,
        unless otherwise specified.

    **reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
        The specific reconstruction type to generate based on input feature geometry type. Can be provided as
        pygplates.ReconstructType.feature_geometry to only reconstruct regular feature geometries, or
        pygplates.ReconstructType.motion_path to only reconstruct motion path features, or
        pygplates.ReconstructType.flowline to only reconstruct flowline features.
        Generates :class:`reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:`reconstructed
        motion paths<ReconstructedMotionPath>’, or :class:`reconstructed flowlines<ReconstructedFlowline>’ respectively.

    **group_with_feature : bool, default=False
        Used to group reconstructed geometries with their features. This can be useful when a feature has more than one
        geometry and hence more than one reconstructed geometry. The output *reconstructed_geometries* then becomes a
        list of tuples where each tuple contains a :class:`feature<Feature>` and a ``list`` of reconstructed geometries.
        Note: this keyword argument only applies when *reconstructed_geometries* is a list because exported files are
        always grouped with their features. This is applicable to all ReconstructType features.

    **export_wrap_to_dateline : bool, default=True
        Wrap/clip reconstructed geometries to the dateline.

    Returns
    -------
    reconstructed_features : list
        Reconstructed geological features (generated by the reconstruction) are appended to the list.
        The reconstructed geometries are output in the same order as that of their respective input features (in the
        parameter “features”). The order across input feature collections is also retained. This happens regardless
        of whether *features* and *reconstructed_features* include files or not. Note: if keyword argument
        group_with_feature=True then the list contains tuples that group each :class:`feature<Feature>` with a list
        of its reconstructed geometries.

    Raises
    ------
    NotImplementedError
        if the starting time for reconstruction `from_time` is not equal to 0.0.
    """
    from_time, to_time = float(from_time), float(to_time)

    reconstructed_features = []

    if not anchor_plate_id:
        anchor_plate_id = self.anchor_plate_id

    pygplates.reconstruct(
        feature,
        self.rotation_model,
        reconstructed_features,
        to_time,
        anchor_plate_id=anchor_plate_id,
        **kwargs
    )
    return reconstructed_features
def tessellate_mid_ocean_ridges(self, time, tessellation_threshold_radians=0.001, ignore_warnings=False, return_geodataframe=False, **kwargs)

Samples points along resolved spreading features (e.g. mid-ocean ridges) and calculates spreading rates and lengths of ridge segments at a particular geological time.

Resolves topologies at time, tessellates all resolved spreading features to within 'tessellation_threshold_radians' radians. Returns a 4-column vertically stacked tuple with the following data.

  • Col. 0 - longitude of sampled ridge point
  • Col. 1 - latitude of sampled ridge point
  • Col. 2 - spreading velocity magnitude (in cm/yr)
  • Col. 3 - length of arc segment (in degrees) that current point is on

All spreading feature types are considered. The transform segments of spreading features are ignored. Note: by default, the function assumes that a segment can deviate 45 degrees from the stage pole before it is considered a transform segment.

Parameters

time : float
The reconstruction time (Ma) at which to query subduction convergence.
tessellation_threshold_radians : float, default=0.001
The threshold sampling distance along the subducting trench (in radians).
ignore_warnings : bool, default=False
Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow.

Returns

ridge_data : a list of vertically-stacked tuples

The results for all tessellated points sampled along the trench. The size of the returned list is equal to the number of tessellated points. Each tuple in the list corresponds to a tessellated point and has the following tuple items:

  • longitude of sampled point
  • latitude of sampled point
  • spreading velocity magnitude (in cm/yr)
  • length of arc segment (in degrees) that current point is on
Expand source code
def tessellate_mid_ocean_ridges(
    self,
    time,
    tessellation_threshold_radians=0.001,
    ignore_warnings=False,
    return_geodataframe=False,
    **kwargs
):
    """Samples points along resolved spreading features (e.g. mid-ocean ridges) and calculates spreading rates and
    lengths of ridge segments at a particular geological time.

    Resolves topologies at `time`, tessellates all resolved spreading features to within 'tessellation_threshold_radians'
    radians. Returns a 4-column vertically stacked tuple with the following data.

    * Col. 0 - longitude of sampled ridge point
    * Col. 1 - latitude of sampled ridge point
    * Col. 2 - spreading velocity magnitude (in cm/yr)
    * Col. 3 - length of arc segment (in degrees) that current point is on

    All spreading feature types are considered. The transform segments of spreading features are ignored.
    Note: by default, the function assumes that a segment can deviate 45 degrees from the stage pole before it is
    considered a transform segment.

    Parameters
    ----------
    time : float
        The reconstruction time (Ma) at which to query subduction convergence.

    tessellation_threshold_radians : float, default=0.001
        The threshold sampling distance along the subducting trench (in radians).

    ignore_warnings : bool, default=False
        Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow.

    Returns
    -------
    ridge_data : a list of vertically-stacked tuples
        The results for all tessellated points sampled along the trench.
        The size of the returned list is equal to the number of tessellated points.
        Each tuple in the list corresponds to a tessellated point and has the following tuple items:

        * longitude of sampled point
        * latitude of sampled point
        * spreading velocity magnitude (in cm/yr)
        * length of arc segment (in degrees) that current point is on
    """
    from . import ptt as _ptt

    anchor_plate_id = kwargs.pop("anchor_plate_id", self.anchor_plate_id)

    if ignore_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            spreading_feature_types = [pygplates.FeatureType.gpml_mid_ocean_ridge]
            ridge_data = _ptt.ridge_spreading_rate.spreading_rates(
                self.rotation_model,
                self.topology_features,
                float(time),
                tessellation_threshold_radians,
                spreading_feature_types,
                anchor_plate_id=anchor_plate_id,
                **kwargs
            )

    else:
        spreading_feature_types = [pygplates.FeatureType.gpml_mid_ocean_ridge]
        ridge_data = _ptt.ridge_spreading_rate.spreading_rates(
            self.rotation_model,
            self.topology_features,
            float(time),
            tessellation_threshold_radians,
            spreading_feature_types,
            anchor_plate_id=anchor_plate_id,
            **kwargs
        )

    if not ridge_data:
        # the _ptt.ridge_spreading_rate.spreading_rates might return None
        return

    ridge_data = np.vstack(ridge_data)

    if return_geodataframe:
        import geopandas as gpd
        from shapely import geometry

        points = [
            geometry.Point(lon, lat)
            for lon, lat in zip(ridge_data[:, 0], ridge_data[:, 1])
        ]
        gdf = gpd.GeoDataFrame(
            {
                "geometry": points,
                "velocity (cm/yr)": ridge_data[:, 2],
                "length (degrees)": ridge_data[:, 3],
            },
            geometry="geometry",
        )
        return gdf

    else:
        return ridge_data
def tessellate_subduction_zones(self, time, tessellation_threshold_radians=0.001, ignore_warnings=False, return_geodataframe=False, **kwargs)

Samples points along subduction zone trenches and obtains subduction data at a particular geological time.

Resolves topologies at time, tessellates all resolved subducting features to within 'tessellation_threshold_radians' radians and obtains the following information for each sampled point along a trench:

tessellate_subduction_zones returns a list of 10 vertically-stacked tuples with the following data per sampled trench point:

  • Col. 0 - longitude of sampled trench point
  • Col. 1 - latitude of sampled trench point
  • Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
  • Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
  • Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
  • Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
  • Col. 6 - length of arc segment (in degrees) that current point is on
  • Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
  • Col. 8 - subducting plate ID
  • Col. 9 - trench plate ID

Parameters

time : float
The reconstruction time (Ma) at which to query subduction convergence.
tessellation_threshold_radians : float, default=0.001
The threshold sampling distance along the subducting trench (in radians).

Returns

subduction_data : a list of vertically-stacked tuples

The results for all tessellated points sampled along the trench. The size of the returned list is equal to the number of tessellated points. Each tuple in the list corresponds to a tessellated point and has the following tuple items:

  • Col. 0 - longitude of sampled trench point
  • Col. 1 - latitude of sampled trench point
  • Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
  • Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
  • Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
  • Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
  • Col. 6 - length of arc segment (in degrees) that current point is on
  • Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
  • Col. 8 - subducting plate ID
  • Col. 9 - trench plate ID

Notes

Each sampled point in the output is the midpoint of a great circle arc between two adjacent points in the trench polyline. The trench normal vector used in the obliquity calculations is perpendicular to the great circle arc of each point (arc midpoint) and pointing towards the overriding plate (rather than away from it).

Each trench is sampled at approximately uniform intervals along its length (specified via a threshold sampling distance). The sampling along the entire length of a trench is not exactly uniform. Each segment along a trench is sampled such that the samples have a uniform spacing that is less than or equal to the threshold sampling distance. However each segment in a trench might have a slightly different spacing distance (since segment lengths are not integer multiples of the threshold sampling distance).

The trench normal (at each arc segment mid-point) always points towards the overriding plate. The obliquity angles are in the range (-180 180). The range (0, 180) goes clockwise (when viewed from above the Earth) from the trench normal direction to the velocity vector. The range (0, -180) goes counter-clockwise. You can change the range (-180, 180) to the range (0, 360) by adding 360 to negative angles. The trench normal is perpendicular to the trench and pointing toward the overriding plate.

Note that the convergence velocity magnitude is negative if the plates are diverging (if convergence obliquity angle is greater than 90 or less than -90). And note that the absolute velocity magnitude is negative if the trench (subduction zone) is moving towards the overriding plate (if absolute obliquity angle is less than 90 or greater than -90) - note that this ignores the kinematics of the subducting plate.

The delta time interval used for velocity calculations is, by default, assumed to be 1Ma.

Expand source code
def tessellate_subduction_zones(
    self,
    time,
    tessellation_threshold_radians=0.001,
    ignore_warnings=False,
    return_geodataframe=False,
    **kwargs
):
    """Samples points along subduction zone trenches and obtains subduction data at a particular
    geological time.

    Resolves topologies at `time`, tessellates all resolved subducting features to within 'tessellation_threshold_radians'
    radians and obtains the following information for each sampled point along a trench:

    `tessellate_subduction_zones` returns a list of 10 vertically-stacked tuples with the following data per sampled trench point:

    * Col. 0 - longitude of sampled trench point
    * Col. 1 - latitude of sampled trench point
    * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
    * Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
    * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
    * Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
    * Col. 6 - length of arc segment (in degrees) that current point is on
    * Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
    * Col. 8 - subducting plate ID
    * Col. 9 - trench plate ID


    Parameters
    ----------
    time : float
        The reconstruction time (Ma) at which to query subduction convergence.

    tessellation_threshold_radians : float, default=0.001
        The threshold sampling distance along the subducting trench (in radians).

    Returns
    -------
    subduction_data : a list of vertically-stacked tuples
        The results for all tessellated points sampled along the trench.
        The size of the returned list is equal to the number of tessellated points.
        Each tuple in the list corresponds to a tessellated point and has the following tuple items:

        * Col. 0 - longitude of sampled trench point
        * Col. 1 - latitude of sampled trench point
        * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
        * Col. 3 - subducting convergence velocity obliquity angle (angle between trench normal vector and convergence velocity vector)
        * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
        * Col. 5 - trench absolute velocity obliquity angle (angle between trench normal vector and trench absolute velocity vector)
        * Col. 6 - length of arc segment (in degrees) that current point is on
        * Col. 7 - trench normal azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
        * Col. 8 - subducting plate ID
        * Col. 9 - trench plate ID

    Notes
    -----
    Each sampled point in the output is the midpoint of a great circle arc between two adjacent points in the trench polyline.
    The trench normal vector used in the obliquity calculations is perpendicular to the great circle arc of each point
    (arc midpoint) and pointing towards the overriding plate (rather than away from it).

    Each trench is sampled at approximately uniform intervals along its length (specified via a threshold sampling distance).
    The sampling along the entire length of a trench is not exactly uniform. Each segment along a trench is sampled
    such that the samples have a uniform spacing that is less than or equal to the threshold sampling distance. However each
    segment in a trench might have a slightly different spacing distance (since segment lengths are not integer multiples of
    the threshold sampling distance).

    The trench normal (at each arc segment mid-point) always points *towards* the overriding plate.
    The obliquity angles are in the range (-180 180). The range (0, 180) goes clockwise (when viewed from above the Earth)
    from the trench normal direction to the velocity vector. The range (0, -180) goes counter-clockwise.
    You can change the range (-180, 180) to the range (0, 360) by adding 360 to negative angles.
    The trench normal is perpendicular to the trench and pointing toward the overriding plate.

    Note that the convergence velocity magnitude is negative if the plates are diverging (if convergence obliquity angle
    is greater than 90 or less than -90). And note that the absolute velocity magnitude is negative if the trench
    (subduction zone) is moving towards the overriding plate (if absolute obliquity angle is less than 90 or greater
    than -90) - note that this ignores the kinematics of the subducting plate.

    The delta time interval used for velocity calculations is, by default, assumed to be 1Ma.
    """
    from . import ptt as _ptt

    anchor_plate_id = kwargs.pop("anchor_plate_id", self.anchor_plate_id)

    if ignore_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            subduction_data = _ptt.subduction_convergence.subduction_convergence(
                self.rotation_model,
                self.topology_features,
                tessellation_threshold_radians,
                float(time),
                anchor_plate_id=anchor_plate_id,
                **kwargs
            )

    else:
        subduction_data = _ptt.subduction_convergence.subduction_convergence(
            self.rotation_model,
            self.topology_features,
            tessellation_threshold_radians,
            float(time),
            anchor_plate_id=anchor_plate_id,
            **kwargs
        )

    subduction_data = np.vstack(subduction_data)

    if return_geodataframe:
        import geopandas as gpd
        from shapely import geometry

        coords = [
            geometry.Point(lon, lat)
            for lon, lat in zip(subduction_data[:, 0], subduction_data[:, 1])
        ]
        d = {"geometry": coords}

        labels = [
            "convergence velocity (cm/yr)",
            "convergence obliquity angle (degrees)",
            "trench velocity (cm/yr)",
            "trench obliquity angle (degrees)",
            "length (degrees)",
            "trench normal angle (degrees)",
            "subducting plate ID",
            "overriding plate ID",
        ]

        for i, label in enumerate(labels):
            index = 2 + i
            d[label] = subduction_data[:, index]

        gdf = gpd.GeoDataFrame(d, geometry="geometry")
        return gdf

    else:
        return subduction_data
def total_continental_arc_length(self, time, continental_grid, trench_arc_distance, ignore_warnings=True)

Calculates the total length of all global continental arcs (km) at the specified geological time (Ma).

Uses Plate Tectonic Tools' subduction_convergence workflow to sample a given plate model's trench features into point features and obtain their subduction polarities. The resolved points are projected out by the trench_arc_distance and their new locations are linearly interpolated onto the supplied continental_grid. If the projected trench points lie in the grid, they are considered continental arc points, and their arc segment lengths are appended to the total continental arc length for the specified time. The total length is scaled to kilometres using the geocentric Earth radius.

Parameters

time : int
The geological time at which to calculate total continental arc lengths.
continental_grid : Raster, array_like, or str
The continental grid used to identify continental arc points. Must be convertible to Raster. For an array, a global extent is assumed [-180,180,-90,90]. For a filename, the extent is obtained from the file.
trench_arc_distance : float
The trench-to-arc distance (in kilometres) to project sampled trench points out by in the direction of their subduction polarities.
ignore_warnings : bool, default=True
Choose whether to ignore warning messages from PTT's subduction_convergence workflow that alerts the user of subduction sub-segments that are ignored due to unidentified polarities and/or subducting plates.

Returns

total_continental_arc_length_kms : float
The continental arc length (in km) at the specified time.
Expand source code
def total_continental_arc_length(
    self,
    time,
    continental_grid,
    trench_arc_distance,
    ignore_warnings=True,
):
    """Calculates the total length of all global continental arcs (km) at the specified geological time (Ma).

    Uses Plate Tectonic Tools' `subduction_convergence` workflow to sample a given plate model's trench features into
    point features and obtain their subduction polarities. The resolved points are projected out by the `trench_arc_distance`
    and their new locations are linearly interpolated onto the supplied `continental_grid`. If the projected trench
    points lie in the grid, they are considered continental arc points, and their arc segment lengths are appended
    to the total continental arc length for the specified `time`. The total length is scaled to kilometres using the geocentric
    Earth radius.

    Parameters
    ----------
    time : int
        The geological time at which to calculate total continental arc lengths.
    continental_grid: Raster, array_like, or str
        The continental grid used to identify continental arc points. Must
        be convertible to `Raster`. For an array, a global extent is
        assumed [-180,180,-90,90]. For a filename, the extent is obtained
        from the file.
    trench_arc_distance : float
        The trench-to-arc distance (in kilometres) to project sampled trench points out by in the direction of their
        subduction polarities.
    ignore_warnings : bool, default=True
        Choose whether to ignore warning messages from PTT's subduction_convergence workflow that alerts the user of
        subduction sub-segments that are ignored due to unidentified polarities and/or subducting plates.

    Returns
    -------
    total_continental_arc_length_kms : float
        The continental arc length (in km) at the specified time.
    """
    from . import grids as _grids

    if isinstance(continental_grid, _grids.Raster):
        graster = continental_grid
    elif isinstance(continental_grid, str):
        # Process the continental grid directory
        graster = _grids.Raster(
            data=continental_grid,
            realign=True,
            time=float(time),
        )
    else:
        # Process the masked continental grid
        try:
            continental_grid = np.array(continental_grid)
            graster = _grids.Raster(
                data=continental_grid,
                extent=[-180, 180, -90, 90],
                time=float(time),
            )
        except Exception as e:
            raise TypeError(
                "Invalid type for `continental_grid` (must be Raster,"
                + " str, or array_like)"
            ) from e
    if (time != graster.time) and (not ignore_warnings):
        raise RuntimeWarning(
            "`continental_grid.time` ({}) ".format(graster.time)
            + "does not match `time` ({})".format(time)
        )

    # Obtain trench data with Plate Tectonic Tools
    trench_data = self.tessellate_subduction_zones(
        time, ignore_warnings=ignore_warnings
    )

    # Extract trench data
    trench_normal_azimuthal_angle = trench_data[:, 7]
    trench_arcseg = trench_data[:, 6]
    trench_pt_lon = trench_data[:, 0]
    trench_pt_lat = trench_data[:, 1]

    # Modify the trench-arc distance using the geocentric radius
    arc_distance = trench_arc_distance / (
        _tools.geocentric_radius(trench_pt_lat) / 1000
    )

    # Project trench points out along trench-arc distance, and obtain their new lat-lon coordinates
    dlon = arc_distance * np.sin(np.radians(trench_normal_azimuthal_angle))
    dlat = arc_distance * np.cos(np.radians(trench_normal_azimuthal_angle))
    ilon = trench_pt_lon + np.degrees(dlon)
    ilat = trench_pt_lat + np.degrees(dlat)

    # Linearly interpolate projected points onto continental grids, and collect the indices of points that lie
    # within the grids.
    sampled_points = graster.interpolate(
        ilon,
        ilat,
        method="linear",
        return_indices=False,
    )
    continental_indices = np.where(sampled_points > 0)
    point_lats = ilat[continental_indices]
    point_radii = _tools.geocentric_radius(point_lats) * 1.0e-3  # km
    segment_arclens = np.deg2rad(trench_arcseg[continental_indices])
    segment_lengths = point_radii * segment_arclens
    return np.sum(segment_lengths)
def total_ridge_length(self, time, use_ptt=False, ignore_warnings=False)

Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

if use_ptt is True

Uses Plate Tectonic Tools' ridge_spreading_rate workflow to calculate ridge segment lengths. Scales lengths to kilometres using the geocentric radius.

Otherwise

Resolves topology features of the PlateReconstruction model and extracts their shared boundary sections. The lengths of each GPML mid-ocean ridge shared boundary section are appended to the total ridge length. Scales lengths to kilometres using the geocentric radius.

Parameters

time : int
The geological time at which to calculate total mid-ocean ridge lengths.
use_ptt : bool, default=False
If set to True, the PTT method is used.
ignore_warnings : bool, default=False
Choose whether to ignore warning messages from PTT's ridge_spreading_rate workflow.

Raises

ValueError
If neither use_pygplates or use_ptt have been set to True.

Returns

total_ridge_length_kms : float
The total length of global mid-ocean ridges (in kilometres) at the specified time.
Expand source code
def total_ridge_length(self, time, use_ptt=False, ignore_warnings=False):
    """Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

    if `use_ptt` is True

    Uses Plate Tectonic Tools' `ridge_spreading_rate` workflow to calculate ridge segment lengths. Scales lengths to
    kilometres using the geocentric radius.

    Otherwise

    Resolves topology features of the PlateReconstruction model and extracts their shared boundary sections.
    The lengths of each GPML mid-ocean ridge shared boundary section are appended to the total ridge length.
    Scales lengths to kilometres using the geocentric radius.


    Parameters
    ----------
    time : int
        The geological time at which to calculate total mid-ocean ridge lengths.
    use_ptt : bool, default=False
        If set to `True`, the PTT method is used.
    ignore_warnings : bool, default=False
        Choose whether to ignore warning messages from PTT's `ridge_spreading_rate` workflow.

    Raises
    ------
    ValueError
        If neither `use_pygplates` or `use_ptt` have been set to `True`.

    Returns
    -------
    total_ridge_length_kms : float
        The total length of global mid-ocean ridges (in kilometres) at the specified time.
    """
    from . import ptt as _ptt

    if use_ptt is True:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            ridge_data = self.tessellate_mid_ocean_ridges(time)

        ridge_arcseg = ridge_data[:, 3]
        ridge_pt_lat = ridge_data[:, 1]

        total_ridge_length_kms = 0
        for i, segment in enumerate(ridge_arcseg):
            earth_radius = _tools.geocentric_radius(ridge_pt_lat[i]) / 1e3
            total_ridge_length_kms += np.deg2rad(segment) * earth_radius

        return total_ridge_length_kms

    else:
        resolved_topologies = []
        shared_boundary_sections = []
        pygplates.resolve_topologies(
            self.topology_features,
            self.rotation_model,
            resolved_topologies,
            time,
            shared_boundary_sections,
        )

        total_ridge_length_kms = 0.0
        for shared_boundary_section in shared_boundary_sections:
            if (
                shared_boundary_section.get_feature().get_feature_type()
                != pygplates.FeatureType.gpml_mid_ocean_ridge
            ):
                continue
            for (
                shared_sub_segment
            ) in shared_boundary_section.get_shared_sub_segments():
                clat, clon = (
                    shared_sub_segment.get_resolved_geometry()
                    .get_centroid()
                    .to_lat_lon()
                )
                earth_radius = _tools.geocentric_radius(clat) / 1e3
                total_ridge_length_kms += (
                    shared_sub_segment.get_resolved_geometry().get_arc_length()
                    * earth_radius
                )

        return total_ridge_length_kms
def total_subduction_zone_length(self, time, use_ptt=False, ignore_warnings=False)

Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

if use_ptt is True

Uses Plate Tectonic Tools' subduction_convergence module to calculate trench segment lengths on a unit sphere. The aggregated total subduction zone length is scaled to kilometres using the geocentric radius.

Otherwise

Resolves topology features ascribed to the PlateReconstruction model and extracts their shared boundary sections. The lengths of each trench boundary section are appended to the total subduction zone length. The total length is scaled to kilometres using a latitude-dependent (geocentric) Earth radius.

Parameters

time : int
The geological time at which to calculate total mid-ocean ridge lengths.
use_ptt : bool, default=False
If set to True, the PTT method is used.
ignore_warnings : bool, default=False
Choose whether to ignore warning messages from PTT's subduction_convergence workflow. These warnings alert the user when certain subduction sub-segments are ignored - this happens when the trench segments have unidentifiable subduction polarities and/or subducting plates.

Raises

ValueError
If neither use_pygplates or use_ptt have been set to True.

Returns

total_subduction_zone_length_kms : float
The total subduction zone length (in km) at the specified time.
Expand source code
def total_subduction_zone_length(self, time, use_ptt=False, ignore_warnings=False):
    """Calculates the total length of all mid-ocean ridges (km) at the specified geological time (Ma).

    if `use_ptt` is True

    Uses Plate Tectonic Tools' `subduction_convergence` module to calculate trench segment lengths on a unit sphere.
    The aggregated total subduction zone length is scaled to kilometres using the geocentric radius.

    Otherwise

    Resolves topology features ascribed to the `PlateReconstruction` model and extracts their shared boundary sections.
    The lengths of each trench boundary section are appended to the total subduction zone length.
    The total length is scaled to kilometres using a latitude-dependent (geocentric) Earth radius.


    Parameters
    ----------
    time : int
        The geological time at which to calculate total mid-ocean ridge lengths.
    use_ptt : bool, default=False
        If set to `True`, the PTT method is used.
    ignore_warnings : bool, default=False
        Choose whether to ignore warning messages from PTT's `subduction_convergence` workflow. These warnings alert the user
        when certain subduction sub-segments are ignored - this happens when the trench segments have unidentifiable subduction
        polarities and/or subducting plates.

    Raises
    ------
    ValueError
        If neither `use_pygplates` or `use_ptt` have been set to `True`.

    Returns
    -------
    total_subduction_zone_length_kms : float
        The total subduction zone length (in km) at the specified `time`.

    """
    from . import ptt as _ptt

    if use_ptt:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            subduction_data = self.tessellate_subduction_zones(
                time, ignore_warnings=ignore_warnings
            )

        trench_arcseg = subduction_data[:, 6]
        trench_pt_lat = subduction_data[:, 1]

        total_subduction_zone_length_kms = 0
        for i, segment in enumerate(trench_arcseg):
            earth_radius = _tools.geocentric_radius(trench_pt_lat[i]) / 1e3
            total_subduction_zone_length_kms += np.deg2rad(segment) * earth_radius

        return total_subduction_zone_length_kms

    else:
        resolved_topologies = []
        shared_boundary_sections = []
        pygplates.resolve_topologies(
            self.topology_features,
            self.rotation_model,
            resolved_topologies,
            time,
            shared_boundary_sections,
        )

        total_subduction_zone_length_kms = 0.0
        for shared_boundary_section in shared_boundary_sections:
            if (
                shared_boundary_section.get_feature().get_feature_type()
                != pygplates.FeatureType.gpml_subduction_zone
            ):
                continue
            for (
                shared_sub_segment
            ) in shared_boundary_section.get_shared_sub_segments():
                clat, clon = (
                    shared_sub_segment.get_resolved_geometry()
                    .get_centroid()
                    .to_lat_lon()
                )
                earth_radius = _tools.geocentric_radius(clat) / 1e3
                total_subduction_zone_length_kms += (
                    shared_sub_segment.get_resolved_geometry().get_arc_length()
                    * earth_radius
                )

        return total_subduction_zone_length_kms
class PlotTopologies (plate_reconstruction, coastlines=None, continents=None, COBs=None, time=None, anchor_plate_id=0)

A class with tools to read, reconstruct and plot topology features at specific reconstruction times.

PlotTopologies is a shorthand for PyGPlates and Shapely functionalities that:

  • Read features held in GPlates GPML (GPlates Markup Language) files and ESRI shapefiles;
  • Reconstruct the locations of these features as they migrate through geological time;
  • Turn these reconstructed features into Shapely geometries for plotting on cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map Projections.

To call the PlotTopologies object, supply:

  • an instance of the GPlately plate_reconstruction object

and optionally,

  • a coastline_filename
  • a continent_filename
  • a COB_filename
  • a reconstruction time
  • an anchor_plate_id

For example:

# Calling the PlotTopologies object
gplot = gplately.plot.PlotTopologies(plate_reconstruction,
                                    coastline_filename=None,
                                    continent_filename=None,
                                    COB_filename=None,
                                    time=None,
                                    anchor_plate_id=0,
        )

# Setting a new reconstruction time
gplot.time = 20 # Ma

The coastline_filename, continent_filename and COB_filename can be single strings to GPML and/or shapefiles, as well as instances of FeatureCollection. If using GPlately's DataServer object to source these files, they will be passed as FeatureCollection items.

Some features for plotting (like plate boundaries) are taken from the PlateReconstruction object'stopology_features attribute. They have already been reconstructed to the given time using Plate Tectonic Tools. Simply provide a new reconstruction time by changing the time attribute, e.g.

gplot.time = 20 # Ma

which will automatically reconstruct all topologies to the specified time. You MUST set gplot.time before plotting anything.

A variety of geological features can be plotted on GeoAxes/GeoAxesSubplot maps as Shapely MultiLineString or MultiPolygon geometries, including:

  • subduction boundaries & subduction polarity teeth
  • mid-ocean ridge boundaries
  • transform boundaries
  • miscellaneous boundaries
  • coastline polylines
  • continental polygons and
  • continent-ocean boundary polylines
  • topological plate velocity vector fields
  • netCDF4 MaskedArray or ndarray raster data:
    • seafloor age grids
    • paleo-age grids
    • global relief (topography and bathymetry)
  • assorted reconstructable feature data, for example:
    • seafloor fabric
    • large igneous provinces
    • volcanic provinces

Attributes

plate_reconstruction : instance of <gplately.reconstruction.PlateReconstruction>
The GPlately PlateReconstruction object will be used to access a plate rotation_model and a set of topology_features which contains plate boundary features like trenches, ridges and transforms.
anchor_plate_id : int, default 0
The anchor plate ID used for reconstruction.
base_projection : instance of <cartopy.crs.{transform}>, default <cartopy.crs.PlateCarree> object
where {transform} is the map Projection to use on the Cartopy GeoAxes. By default, the base projection is set to cartopy.crs.PlateCarree. See the Cartopy projection list for all supported Projection types.
coastlines : str, or instance of <pygplates.FeatureCollection>
The full string path to a coastline feature file. Coastline features can also be passed as instances of the FeatureCollection object (this is the case if these features are sourced from the DataServer object).
continents : str, or instance of <pygplates.FeatureCollection>
The full string path to a continent feature file. Continent features can also be passed as instances of the FeatureCollection object (this is the case if these features are sourced from the DataServer object).
COBs : str, or instance of <pygplates.FeatureCollection>
The full string path to a COB feature file. COB features can also be passed as instances of the FeatureCollection object (this is the case if these features are sourced from the DataServer object).
coastlines : iterable/list of <pygplates.ReconstructedFeatureGeometry>
A list containing coastline features reconstructed to the specified time attribute.
continents : iterable/list of <pygplates.ReconstructedFeatureGeometry>
A list containing continent features reconstructed to the specified time attribute.
COBs : iterable/list of <pygplates.ReconstructedFeatureGeometry>
A list containing COB features reconstructed to the specified time attribute.
time : float
The time (Ma) to reconstruct and plot geological features to.
topologies : iterable/list of <pygplates.Feature>

A list containing assorted topologies like:

  • pygplates.FeatureType.gpml_topological_network
  • pygplates.FeatureType.gpml_oceanic_crust
  • pygplates.FeatureType.gpml_topological_slab_boundary
  • pygplates.FeatureType.gpml_topological_closed_plate_boundary
ridge_transforms : iterable/list of <pygplates.Feature>
A list containing ridge and transform boundary sections of type pygplates.FeatureType.gpml_mid_ocean_ridge
ridges : iterable/list of <pygplates.Feature>
A list containing ridge boundary sections of type pygplates.FeatureType.gpml_mid_ocean_ridge
transforms : iterable/list of <pygplates.Feature>
A list containing transform boundary sections of type pygplates.FeatureType.gpml_mid_ocean_ridge
trenches : iterable/list of <pygplates.Feature>
A list containing trench boundary sections of type pygplates.FeatureType.gpml_subduction_zone
trench_left : iterable/list of <pygplates.Feature>
A list containing left subduction boundary sections of type pygplates.FeatureType.gpml_subduction_zone
trench_right : iterable/list of <pygplates.Feature>
A list containing right subduction boundary sections of type pygplates.FeatureType.gpml_subduction_zone
other : iterable/list of <pygplates.Feature>
A list containing other geological features like unclassified features, extended continental crusts, continental rifts, faults, orogenic belts, fracture zones, inferred paleo boundaries, terrane boundaries and passive continental boundaries.
Expand source code
class PlotTopologies(object):
    """A class with tools to read, reconstruct and plot topology features at specific
    reconstruction times.

    `PlotTopologies` is a shorthand for PyGPlates and Shapely functionalities that:

    * Read features held in GPlates GPML (GPlates Markup Language) files and
    ESRI shapefiles;
    * Reconstruct the locations of these features as they migrate through
    geological time;
    * Turn these reconstructed features into Shapely geometries for plotting
    on `cartopy.mpl.geoaxes.GeoAxes` or `cartopy.mpl.geoaxes.GeoAxesSubplot` map
    Projections.

    To call the `PlotTopologies` object, supply:

    * an instance of the GPlately `plate_reconstruction` object

    and optionally,

    * a `coastline_filename`
    * a `continent_filename`
    * a `COB_filename`
    * a reconstruction `time`
    * an `anchor_plate_id`

    For example:

        # Calling the PlotTopologies object
        gplot = gplately.plot.PlotTopologies(plate_reconstruction,
                                            coastline_filename=None,
                                            continent_filename=None,
                                            COB_filename=None,
                                            time=None,
                                            anchor_plate_id=0,
                )

        # Setting a new reconstruction time
        gplot.time = 20 # Ma

    The `coastline_filename`, `continent_filename` and `COB_filename` can be single
    strings to GPML and/or shapefiles, as well as instances of `pygplates.FeatureCollection`.
    If using GPlately's `DataServer` object to source these files, they will be passed as
    `pygplates.FeatureCollection` items.

    Some features for plotting (like plate boundaries) are taken from the `PlateReconstruction`
    object's`topology_features` attribute. They have already been reconstructed to the given
    `time` using [Plate Tectonic Tools](https://github.com/EarthByte/PlateTectonicTools).
    Simply provide a new reconstruction time by changing the `time` attribute, e.g.

        gplot.time = 20 # Ma

    which will automatically reconstruct all topologies to the specified time.
    You __MUST__ set `gplot.time` before plotting anything.

    A variety of geological features can be plotted on GeoAxes/GeoAxesSubplot maps
    as Shapely `MultiLineString` or `MultiPolygon` geometries, including:

    * subduction boundaries & subduction polarity teeth
    * mid-ocean ridge boundaries
    * transform boundaries
    * miscellaneous boundaries
    * coastline polylines
    * continental polygons and
    * continent-ocean boundary polylines
    * topological plate velocity vector fields
    * netCDF4 MaskedArray or ndarray raster data:
        - seafloor age grids
        - paleo-age grids
        - global relief (topography and bathymetry)
    * assorted reconstructable feature data, for example:
        - seafloor fabric
        - large igneous provinces
        - volcanic provinces

    Attributes
    ----------
    plate_reconstruction : instance of <gplately.reconstruction.PlateReconstruction>
        The GPlately `PlateReconstruction` object will be used to access a plate
        `rotation_model` and a set of `topology_features` which contains plate boundary
        features like trenches, ridges and transforms.

    anchor_plate_id : int, default 0
        The anchor plate ID used for reconstruction.

    base_projection : instance of <cartopy.crs.{transform}>, default <cartopy.crs.PlateCarree> object
        where {transform} is the map Projection to use on the Cartopy GeoAxes.
        By default, the base projection is set to cartopy.crs.PlateCarree. See the
        [Cartopy projection list](https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html)
        for all supported Projection types.

    coastlines : str, or instance of <pygplates.FeatureCollection>
        The full string path to a coastline feature file. Coastline features can also
        be passed as instances of the `pygplates.FeatureCollection` object (this is
        the case if these features are sourced from the `DataServer` object).

    continents : str, or instance of <pygplates.FeatureCollection>
        The full string path to a continent feature file. Continent features can also
        be passed as instances of the `pygplates.FeatureCollection` object (this is
        the case if these features are sourced from the `DataServer` object).

    COBs : str, or instance of <pygplates.FeatureCollection>
        The full string path to a COB feature file. COB features can also be passed
        as instances of the `pygplates.FeatureCollection` object (this is the case
        if these features are sourced from the `DataServer` object).

    coastlines : iterable/list of <pygplates.ReconstructedFeatureGeometry>
        A list containing coastline features reconstructed to the specified `time` attribute.

    continents : iterable/list of <pygplates.ReconstructedFeatureGeometry>
        A list containing continent features reconstructed to the specified `time` attribute.

    COBs : iterable/list of <pygplates.ReconstructedFeatureGeometry>
        A list containing COB features reconstructed to the specified `time` attribute.

    time : float
        The time (Ma) to reconstruct and plot geological features to.

    topologies : iterable/list of <pygplates.Feature>
        A list containing assorted topologies like:

        - pygplates.FeatureType.gpml_topological_network
        - pygplates.FeatureType.gpml_oceanic_crust
        - pygplates.FeatureType.gpml_topological_slab_boundary
        - pygplates.FeatureType.gpml_topological_closed_plate_boundary

    ridge_transforms : iterable/list of <pygplates.Feature>
        A list containing ridge and transform boundary sections of type
        pygplates.FeatureType.gpml_mid_ocean_ridge

    ridges : iterable/list of <pygplates.Feature>
        A list containing ridge boundary sections of type pygplates.FeatureType.gpml_mid_ocean_ridge

    transforms : iterable/list of <pygplates.Feature>
        A list containing transform boundary sections of type pygplates.FeatureType.gpml_mid_ocean_ridge

    trenches : iterable/list of <pygplates.Feature>
        A list containing trench boundary sections of type pygplates.FeatureType.gpml_subduction_zone

    trench_left : iterable/list of <pygplates.Feature>
        A list containing left subduction boundary sections of type pygplates.FeatureType.gpml_subduction_zone

    trench_right : iterable/list of <pygplates.Feature>
        A list containing right subduction boundary sections of type pygplates.FeatureType.gpml_subduction_zone

    other : iterable/list of <pygplates.Feature>
        A list containing other geological features like unclassified features, extended continental crusts,
        continental rifts, faults, orogenic belts, fracture zones, inferred paleo boundaries, terrane
        boundaries and passive continental boundaries.

    """

    def __init__(
        self,
        plate_reconstruction,
        coastlines=None,
        continents=None,
        COBs=None,
        time=None,
        anchor_plate_id=0,
    ):
        self.plate_reconstruction = plate_reconstruction

        if self.plate_reconstruction.topology_features is None:
            raise ValueError("Plate model must have topology features.")

        self.base_projection = ccrs.PlateCarree()

        # store these for when time is updated
        # make sure these are initialised as FeatureCollection objects

        self._coastlines = _load_FeatureCollection(coastlines)
        self._continents = _load_FeatureCollection(continents)
        self._COBs = _load_FeatureCollection(COBs)

        self.coastlines = None
        self.continents = None
        self.COBs = None

        self._anchor_plate_id = self._check_anchor_plate_id(anchor_plate_id)

        # store topologies for easy access
        # setting time runs the update_time routine
        self._time = None
        if time is not None:
            self.time = time

    def __getstate__(self):
        filenames = self.plate_reconstruction.__getstate__()

        # add important variables from Points object
        if self._coastlines:
            filenames["coastlines"] = self._coastlines.filenames
        if self._continents:
            filenames["continents"] = self._continents.filenames
        if self._COBs:
            filenames["COBs"] = self._COBs.filenames
        filenames["time"] = self.time
        filenames["plate_id"] = self._anchor_plate_id

        return filenames

    def __setstate__(self, state):
        plate_reconstruction_args = [state["rotation_model"], None, None]
        if "topology_features" in state:
            plate_reconstruction_args[1] = state["topology_features"]
        if "static_polygons" in state:
            plate_reconstruction_args[2] = state["static_polygons"]

        self.plate_reconstruction = _PlateReconstruction(*plate_reconstruction_args)

        self._coastlines = None
        self._continents = None
        self._COBs = None
        self.coastlines = None
        self.continents = None
        self.COBs = None

        # reinstate unpicklable items
        if "coastlines" in state:
            self._coastlines = _FeatureCollection()
            for feature in state["coastlines"]:
                self._coastlines.add(_FeatureCollection(feature))

        if "continents" in state:
            self._continents = _FeatureCollection()
            for feature in state["continents"]:
                self._continents.add(_FeatureCollection(feature))

        if "COBs" in state:
            self._COBs = _FeatureCollection()
            for feature in state["COBs"]:
                self._COBs.add(_FeatureCollection(feature))

        self._anchor_plate_id = state["plate_id"]
        self.base_projection = ccrs.PlateCarree()
        self._time = None

    @property
    def time(self):
        """The reconstruction time."""
        return self._time

    @time.setter
    def time(self, var):
        """Allows the time attribute to be changed. Updates all instances of the time attribute in the object (e.g.
        reconstructions and resolving topologies will use this new time).

        Raises
        ------
        ValueError
            If the chosen reconstruction time is <0 Ma.
        """
        if var == self.time:
            pass
        elif var >= 0:
            self.update_time(var)
        else:
            raise ValueError("Enter a valid time >= 0")

    @property
    def anchor_plate_id(self):
        """Anchor plate ID for reconstruction. Must be an integer >= 0."""
        return self._anchor_plate_id

    @anchor_plate_id.setter
    def anchor_plate_id(self, anchor_plate):
        self._anchor_plate_id = self._check_anchor_plate_id(anchor_plate)
        self.update_time(self.time)

    @staticmethod
    def _check_anchor_plate_id(id):
        id = int(id)
        if id < 0:
            raise ValueError("Invalid anchor plate ID: {}".format(id))
        return id

    def update_time(self, time):
        """Re-reconstruct features and topologies to the time specified by the `PlotTopologies` `time` attribute
        whenever it or the anchor plate is updated.

        Notes
        -----
        The following `PlotTopologies` attributes are updated whenever a reconstruction `time` attribute is set:

        - resolved topology features (topological plates and networks)
        - ridge and transform boundary sections (resolved features)
        - ridge boundary sections (resolved features)
        - transform boundary sections (resolved features)
        - subduction boundary sections (resolved features)
        - left subduction boundary sections (resolved features)
        - right subduction boundary sections (resolved features)
        - other boundary sections (resolved features) that are not subduction zones or mid-ocean ridges
        (ridge/transform)

        Moreover, coastlines, continents and COBs are reconstructed to the new specified `time`.
        """
        self._time = float(time)
        resolved_topologies = ptt.resolve_topologies.resolve_topologies_into_features(
            self.plate_reconstruction.rotation_model,
            self.plate_reconstruction.topology_features,
            self.time,
            anchor_plate_id=self.anchor_plate_id,
        )

        (
            self.topologies,
            self.ridge_transforms,
            self.ridges,
            self.transforms,
            self.trenches,
            self.trench_left,
            self.trench_right,
            self.other,
        ) = resolved_topologies

        self.ridges, self.transforms = ptt.separate_ridge_transform_segments.separate_features_into_ridges_and_transforms(
            self.plate_reconstruction.rotation_model,
            self.ridge_transforms
        )

        # miscellaneous boundaries
        self.continental_rifts = []
        self.faults = []
        self.fracture_zones = []
        self.inferred_paleo_boundaries = []
        self.terrane_boundaries = []
        self.transitional_crusts = []
        self.orogenic_belts = []
        self.sutures = []
        self.continental_crusts = []
        self.extended_continental_crusts = []
        self.passive_continental_boundaries = []
        self.slab_edges = []
        self.misc_transforms = []
        self.unclassified_features = []

        for topol in self.other:
            if topol.get_feature_type() == pygplates.FeatureType.gpml_continental_rift:
                self.continental_rifts.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_fault:
                self.faults.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_fracture_zone:
                self.fracture_zones.append(topol)

            elif (
                topol.get_feature_type()
                == pygplates.FeatureType.gpml_inferred_paleo_boundary
            ):
                self.inferred_paleo_boundaries.append(topol)

            elif (
                topol.get_feature_type() == pygplates.FeatureType.gpml_terrane_boundary
            ):
                self.terrane_boundaries.append(topol)

            elif (
                topol.get_feature_type()
                == pygplates.FeatureType.gpml_transitional_crust
            ):
                self.transitional_crusts.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_orogenic_belt:
                self.orogenic_belts.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_suture:
                self.sutures.append(topol)

            elif (
                topol.get_feature_type() == pygplates.FeatureType.gpml_continental_crust
            ):
                self.continental_crusts.append(topol)

            elif (
                topol.get_feature_type()
                == pygplates.FeatureType.gpml_extended_continental_crust
            ):
                self.extended_continental_crusts.append(topol)

            elif (
                topol.get_feature_type()
                == pygplates.FeatureType.gpml_passive_continental_boundary
            ):
                self.passive_continental_boundaries.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_slab_edge:
                self.slab_edges.append(topol)

            elif topol.get_feature_type() == pygplates.FeatureType.gpml_transform:
                self.misc_transforms.append(topol)

            elif (
                topol.get_feature_type()
                == pygplates.FeatureType.gpml_unclassified_feature
            ):
                self.unclassified_features.append(topol)

        # reconstruct other important polygons and lines
        if self._coastlines:
            self.coastlines = self.plate_reconstruction.reconstruct(
                self._coastlines,
                self.time,
                from_time=0,
                anchor_plate_id=self.anchor_plate_id,
            )

        if self._continents:
            self.continents = self.plate_reconstruction.reconstruct(
                self._continents,
                self.time,
                from_time=0,
                anchor_plate_id=self.anchor_plate_id,
            )

        if self._COBs:
            self.COBs = self.plate_reconstruction.reconstruct(
                self._COBs, self.time, from_time=0, anchor_plate_id=self.anchor_plate_id
            )

    # subduction teeth
    def _tessellate_triangles(
        self, features, tesselation_radians, triangle_base_length, triangle_aspect=1.0
    ):
        """Places subduction teeth along subduction boundary line segments within a MultiLineString shapefile.

        Parameters
        ----------
        shapefilename  : str
            Path to shapefile containing the subduction boundary features

        tesselation_radians : float
            Parametrises subduction teeth density. Triangles are generated only along line segments with distances
            that exceed the given threshold tessellation_radians.

        triangle_base_length : float
            Length of teeth triangle base

        triangle_aspect : float, default=1.0
            Aspect ratio of teeth triangles. Ratio is 1.0 by default.

        Returns
        -------
        X_points : (n,3) array
            X points that define the teeth triangles
        Y_points : (n,3) array
            Y points that define the teeth triangles
        """

        tesselation_degrees = np.degrees(tesselation_radians)
        triangle_pointsX = []
        triangle_pointsY = []

        date_line_wrapper = pygplates.DateLineWrapper()

        for feature in features:
            cum_distance = 0.0

            for geometry in feature.get_geometries():
                wrapped_lines = date_line_wrapper.wrap(geometry)
                for line in wrapped_lines:
                    pts = np.array(
                        [
                            (p.get_longitude(), p.get_latitude())
                            for p in line.get_points()
                        ]
                    )

                    for p in range(0, len(pts) - 1):
                        A = pts[p]
                        B = pts[p + 1]

                        AB_dist = B - A
                        AB_norm = AB_dist / np.hypot(*AB_dist)
                        cum_distance += np.hypot(*AB_dist)

                        # create a new triangle if cumulative distance is exceeded.
                        if cum_distance >= tesselation_degrees:
                            C = A + triangle_base_length * AB_norm

                            # find normal vector
                            AD_dist = np.array([AB_norm[1], -AB_norm[0]])
                            AD_norm = AD_dist / np.linalg.norm(AD_dist)

                            C0 = A + 0.5 * triangle_base_length * AB_norm

                            # project point along normal vector
                            D = C0 + triangle_base_length * triangle_aspect * AD_norm

                            triangle_pointsX.append([A[0], C[0], D[0]])
                            triangle_pointsY.append([A[1], C[1], D[1]])

                            cum_distance = 0.0

        return np.array(triangle_pointsX), np.array(triangle_pointsY)

    def get_feature(
        self,
        feature,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed features.

        Notes
        -----
        The feature needed to produce the GeoDataFrame should already be constructed to a `time`.
        This function converts the feature into a set of Shapely geometries whose coordinates are
        passed to a geopandas GeoDataFrame.

        Parameters
        ----------
        feature : instance of <pygplates.Feature>
            A feature reconstructed to `time`.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `feature` geometries.

        """
        shp = shapelify_features(
            feature,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": shp}, geometry="geometry")
        return gdf

    def plot_feature(self, ax, feature, **kwargs):
        """Plot pygplates.FeatureCollection  or pygplates.Feature onto a map.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        **kwargs :
            Keyword arguments for parameters such as `facecolor`, `alpha`,
            etc. for plotting coastline geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with coastline features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_feature(
            feature,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, **kwargs)

    def get_coastlines(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed coastline polygons.

        Notes
        -----
        The `coastlines` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `coastlines` are reconstructed, they are
        converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `coastlines` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `coastlines` to the requested `time` and thus populate the GeoDataFrame.

        """
        if self._time is None:
            raise ValueError(
                "No coastlines have been resolved. Set `PlotTopologies.time` to construct coastlines."
            )

        if self.coastlines is None:
            raise ValueError("Supply coastlines to PlotTopologies object")

        coastline_polygons = shapelify_feature_polygons(
            self.coastlines,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": coastline_polygons}, geometry="geometry")
        return gdf

    def plot_coastlines(self, ax, **kwargs):
        """Plot reconstructed coastline polygons onto a standard map Projection.

        Notes
        -----
        The `coastlines` for plotting are accessed from the `PlotTopologies` object's
        `coastlines` attribute. These `coastlines` are reconstructed to the `time`
        passed to the `PlotTopologies` object and converted into Shapely polylines. The
        reconstructed `coastlines` are added onto the GeoAxes or GeoAxesSubplot map `ax` using
        GeoPandas.
        Map resentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword
        arguments.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        **kwargs :
            Keyword arguments for parameters such as `facecolor`, `alpha`,
            etc. for plotting coastline geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with coastline features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_coastlines(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, **kwargs)

    def get_continents(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental polygons.

        Notes
        -----
        The `continents` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `continents` are reconstructed, they are
        converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `continents` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `continents` to the requested `time` and thus populate the GeoDataFrame.

        """
        if self._time is None:
            raise ValueError(
                "No continents have been resolved. Set `PlotTopologies.time` to construct continents."
            )

        if self.continents is None:
            raise ValueError("Supply continents to PlotTopologies object")

        continent_polygons = shapelify_feature_polygons(
            self.continents,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": continent_polygons}, geometry="geometry")
        return gdf

    def plot_continents(self, ax, **kwargs):
        """Plot reconstructed continental polygons onto a standard map Projection.

        Notes
        -----
        The `continents` for plotting are accessed from the `PlotTopologies` object's
        `continents` attribute. These `continents` are reconstructed to the `time`
        passed to the `PlotTopologies` object and converted into Shapely polygons.
        The reconstructed `coastlines` are plotted onto the GeoAxes or GeoAxesSubplot map `ax` using
        GeoPandas.
        Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as
        keyword arguments.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        **kwargs :
            Keyword arguments for parameters such as `facecolor`, `alpha`,
            etc. for plotting continental geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with continent features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_continents(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, **kwargs)

    def get_continent_ocean_boundaries(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continent-ocean
        boundary lines.

        Notes
        -----
        The `COBs` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `COBs` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `COBs` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `COBs` to the requested `time` and thus populate the GeoDataFrame.

        """
        if self._time is None:
            raise ValueError(
                "No geometries have been resolved. Set `PlotTopologies.time` to construct topologies."
            )

        if self.COBs is None:
            raise ValueError("Supply COBs to PlotTopologies object")

        COB_lines = shapelify_feature_lines(
            self.COBs,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": COB_lines}, geometry="geometry")
        return gdf

    def plot_continent_ocean_boundaries(self, ax, **kwargs):
        """Plot reconstructed continent-ocean boundary (COB) polygons onto a standard
        map Projection.

        Notes
        -----
        The `COBs` for plotting are accessed from the `PlotTopologies` object's
        `COBs` attribute. These `COBs` are reconstructed to the `time`
        passed to the `PlotTopologies` object and converted into Shapely polylines.
        The reconstructed `COBs` are plotted onto the GeoAxes or GeoAxesSubplot map
        `ax` using GeoPandas. Map presentation details (e.g. `facecolor`, `edgecolor`, `alpha`…)
        are permitted as keyword arguments.

        These COBs are transformed into shapely
        geometries and added onto the chosen map for a specific geological time (supplied to the
        PlotTopologies object). Map presentation details (e.g. facecolor, edgecolor, alpha…)
        are permitted.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        **kwargs :
            Keyword arguments for parameters such as `facecolor`, `alpha`,
            etc. for plotting COB geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with COB features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_continent_ocean_boundaries(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, **kwargs)

    def get_ridges(self, central_meridian=0.0, tessellate_degrees=1):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge lines.

        Notes
        -----
        The `ridges` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `ridges` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `ridges` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `ridges` to the requested `time` and thus populate the GeoDataFrame.

        """
        if self._time is None:
            raise ValueError(
                "No ridges have been resolved. Set `PlotTopologies.time` to construct ridges."
            )

        if self.ridges is None:
            raise ValueError("No ridge topologies passed to PlotTopologies.")

        ridge_lines = shapelify_feature_lines(
            self.ridges,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": ridge_lines}, geometry="geometry")
        return gdf

    def plot_ridges(self, ax, color="black", **kwargs):
        """Plot reconstructed ridge polylines onto a standard map Projection.

        Notes
        -----
        The `ridges` for plotting are accessed from the `PlotTopologies` object's
        `ridges` attribute. These `ridges` are reconstructed to the `time`
        passed to the `PlotTopologies` object and converted into Shapely polylines.
        The reconstructed `ridges` are plotted onto the GeoAxes or GeoAxesSubplot map
        `ax` using GeoPandas. Map presentation details (e.g. `facecolor`, `edgecolor`, `alpha`…)
        are permitted as keyword arguments.

        Ridge geometries are wrapped to the dateline using
        pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
        by splitting a polyline into multiple polylines at the dateline. This is to avoid
        horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
        Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
        compatibility with Cartopy.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the ridge lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc. for
            plotting ridge geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with ridge features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_ridges(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_ridges_and_transforms(
        self,
        central_meridian=0.0,
        tessellate_degrees=1,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge and transform lines.

        Notes
        -----
        The `ridge_transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `ridge_transforms` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `ridges` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `ridge_transforms` to the requested `time` and thus populate the GeoDataFrame.

        """
        if self._time is None:
            raise ValueError(
                "No ridges and transforms have been resolved. Set `PlotTopologies.time` to construct ridges and transforms."
            )

        if self.ridge_transforms is None:
            raise ValueError(
                "No ridge and transform topologies passed to PlotTopologies."
            )

        ridge_transform_lines = shapelify_feature_lines(
            self.ridge_transforms,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": ridge_transform_lines}, geometry="geometry")
        return gdf

    def plot_ridges_and_transforms(self, ax, color="black", **kwargs):
        """Plot reconstructed ridge & transform boundary polylines onto a standard map
        Projection.

        Notes
        -----
        The ridge & transform sections for plotting are accessed from the
        `PlotTopologies` object's `ridge_transforms` attribute. These `ridge_transforms`
        are reconstructed to the `time` passed to the `PlotTopologies` object and converted
        into Shapely polylines. The reconstructed `ridge_transforms` are plotted onto the
        GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
        (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

        Note: Ridge & transform geometries are wrapped to the dateline using
        pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
        by splitting a polyline into multiple polylines at the dateline. This is to avoid
        horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
        Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
        compatibility with Cartopy.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the ridge & transform lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as ‘alpha’, etc. for
            plotting ridge & transform geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with ridge & transform features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_ridges_and_transforms(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_transforms(self, central_meridian=0.0, tessellate_degrees=1):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed transform lines.

        Notes
        -----
        The `transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `transforms` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `transforms` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `transforms` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No transforms have been resolved. Set `PlotTopologies.time` to construct transforms."
            )

        if self.transforms is None:
            raise ValueError("No transform topologies passed to PlotTopologies.")

        transform_lines = shapelify_feature_lines(
            self.transforms,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": transform_lines}, geometry="geometry")
        return gdf

    def plot_transforms(self, ax, color="black", **kwargs):
        """Plot reconstructed transform boundary polylines onto a standard map.

        Notes
        -----
        The transform sections for plotting are accessed from the
        `PlotTopologies` object's `transforms` attribute. These `transforms`
        are reconstructed to the `time` passed to the `PlotTopologies` object and converted
        into Shapely polylines. The reconstructed `transforms` are plotted onto the
        GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
        (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

        Transform geometries are wrapped to the dateline using
        pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
        by splitting a polyline into multiple polylines at the dateline. This is to avoid
        horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
        Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
        compatibility with Cartopy.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the transform lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting transform geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with transform features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_transforms(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_trenches(self, central_meridian=0.0, tessellate_degrees=1):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed trench lines.

        Notes
        -----
        The `trenches` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `trenches` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `trenches` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `trenches` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No trenches have been resolved. Set `PlotTopologies.time` to construct trenches."
            )

        if self.trenches is None:
            raise ValueError("No trenches passed to PlotTopologies.")

        trench_lines = shapelify_feature_lines(
            self.trenches,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": trench_lines}, geometry="geometry")
        return gdf

    def plot_trenches(self, ax, color="black", **kwargs):
        """Plot reconstructed subduction trench polylines onto a standard map
        Projection.

        Notes
        -----
        The trench sections for plotting are accessed from the
        `PlotTopologies` object's `trenches` attribute. These `trenches`
        are reconstructed to the `time` passed to the `PlotTopologies` object and converted
        into Shapely polylines. The reconstructed `trenches` are plotted onto the
        GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
        (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

        Trench geometries are wrapped to the dateline using
        pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
        by splitting a polyline into multiple polylines at the dateline. This is to avoid
        horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
        Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
        compatibility with Cartopy.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with transform features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_trenches(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_misc_boundaries(self, central_meridian=0.0, tessellate_degrees=1):
        """Create a geopandas.GeoDataFrame object containing geometries of other reconstructed lines.

        Notes
        -----
        The `other` geometries needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `other` geometries are reconstructed, they are
        converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `other` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `other` geometries to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No miscellaneous topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.other is None:
            raise ValueError("No miscellaneous topologies passed to PlotTopologies.")

        lines = shapelify_features(
            self.other,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": lines}, geometry="geometry")
        return gdf

    def plot_misc_boundaries(self, ax, color="black", **kwargs):
        """Plot reconstructed miscellaneous plate boundary polylines onto a standard
        map Projection.

        Notes
        -----
        The miscellaneous boundary sections for plotting are accessed from the
        `PlotTopologies` object's `other` attribute. These `other` boundaries
        are reconstructed to the `time` passed to the `PlotTopologies` object and converted
        into Shapely polylines. The reconstructed `other` boundaries are plotted onto the
        GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
        (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

        Miscellaneous boundary geometries are wrapped to the dateline using
        pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
        by splitting a polyline into multiple polylines at the dateline. This is to avoid
        horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
        Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
        compatibility with Cartopy.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the boundary lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as ‘alpha’, etc. for
            plotting miscellaneous boundary geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with miscellaneous boundary features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_misc_boundaries(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def plot_subduction_teeth_deprecated(
        self, ax, spacing=0.1, size=2.0, aspect=1, color="black", **kwargs
    ):
        """Plot subduction teeth onto a standard map Projection.

        Notes
        -----
        Subduction teeth are tessellated from `PlotTopologies` object attributes `trench_left` and
        `trench_right`, and transformed into Shapely polygons for plotting.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        spacing : float, default=0.1
            The tessellation threshold (in radians). Parametrises subduction tooth density.
            Triangles are generated only along line segments with distances that exceed
            the given threshold ‘spacing’.

        size : float, default=2.0
            Length of teeth triangle base.

        aspect : float, default=1
            Aspect ratio of teeth triangles. Ratio is 1.0 by default.

        color : str, default=’black’
            The colour of the teeth. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as ‘alpha’, etc. for
            plotting subduction tooth polygons.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with subduction teeth plotted onto the chosen map projection.
        """
        import shapely

        # add Subduction Teeth
        subd_xL, subd_yL = self._tessellate_triangles(
            self.trench_left,
            tesselation_radians=spacing,
            triangle_base_length=size,
            triangle_aspect=-aspect,
        )
        subd_xR, subd_yR = self._tessellate_triangles(
            self.trench_right,
            tesselation_radians=spacing,
            triangle_base_length=size,
            triangle_aspect=aspect,
        )

        teeth = []
        for tX, tY in zip(subd_xL, subd_yL):
            triangle_xy_points = np.c_[tX, tY]
            shp = shapely.geometry.Polygon(triangle_xy_points)
            teeth.append(shp)

        for tX, tY in zip(subd_xR, subd_yR):
            triangle_xy_points = np.c_[tX, tY]
            shp = shapely.geometry.Polygon(triangle_xy_points)
            teeth.append(shp)

        return ax.add_geometries(teeth, crs=self.base_projection, color=color, **kwargs)

    def get_subduction_direction(self):
        """Create a geopandas.GeoDataFrame object containing geometries of trench directions.

        Notes
        -----
        The `trench_left` and `trench_right` geometries needed to produce the GeoDataFrame are automatically
        constructed if the optional `time` parameter is passed to the `PlotTopologies` object before calling
        this function. `time` can be passed either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `other` geometries are reconstructed, they are
        converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf_left : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `trench_left` geometry.
        gdf_right : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `trench_right` geometry.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `trench_left` or `trench_right` geometries to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No miscellaneous topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.trench_left is None or self.trench_right is None:
            raise ValueError(
                "No trench_left or trench_right topologies passed to PlotTopologies."
            )

        trench_left_features = shapelify_feature_lines(self.trench_left)
        trench_right_features = shapelify_feature_lines(self.trench_right)

        gdf_left = gpd.GeoDataFrame(
            {"geometry": trench_left_features}, geometry="geometry"
        )
        gdf_right = gpd.GeoDataFrame(
            {"geometry": trench_right_features}, geometry="geometry"
        )

        return gdf_left, gdf_right

    def plot_subduction_teeth(
        self, ax, spacing=0.07, size=None, aspect=None, color="black", **kwargs
    ):
        """Plot subduction teeth onto a standard map Projection.

        Notes
        -----
        Subduction teeth are tessellated from `PlotTopologies` object attributes `trench_left` and
        `trench_right`, and transformed into Shapely polygons for plotting.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        spacing : float, default=0.07
            The tessellation threshold (in radians). Parametrises subduction tooth density.
            Triangles are generated only along line segments with distances that exceed
            the given threshold `spacing`.

        size : float, default=None
            Length of teeth triangle base (in radians). If kept at `None`, then
            `size = 0.5*spacing`.

        aspect : float, default=None
            Aspect ratio of teeth triangles. If kept at `None`, then `aspect = 2/3*size`.

        color : str, default='black'
            The colour of the teeth. By default, it is set to black.

        **kwargs :
            Keyword arguments parameters such as `alpha`, etc.
            for plotting subduction tooth polygons.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).
        """
        if self._time is None:
            raise ValueError(
                "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")

        central_meridian = _meridian_from_ax(ax)
        tessellate_degrees = np.rad2deg(spacing)

        try:
            projection = ax.projection
        except AttributeError:
            print(
                "The ax.projection does not exist. You must set projection to plot Cartopy maps, such as ax = plt.subplot(211, projection=cartopy.crs.PlateCarree())"
            )
            projection = None

        if isinstance(projection, ccrs.PlateCarree):
            spacing = math.degrees(spacing)
        else:
            spacing = spacing * EARTH_RADIUS * 1e3

        if aspect is None:
            aspect = 2.0 / 3.0
        if size is None:
            size = spacing * 0.5

        height = size * aspect

        trench_left_features = shapelify_feature_lines(
            self.trench_left,
            tessellate_degrees=tessellate_degrees,
            central_meridian=central_meridian,
        )
        trench_right_features = shapelify_feature_lines(
            self.trench_right,
            tessellate_degrees=tessellate_degrees,
            central_meridian=central_meridian,
        )

        plot_subduction_teeth(
            trench_left_features,
            size,
            "l",
            height,
            spacing,
            projection=projection,
            ax=ax,
            color=color,
            **kwargs,
        )
        plot_subduction_teeth(
            trench_right_features,
            size,
            "r",
            height,
            spacing,
            projection=projection,
            ax=ax,
            color=color,
            **kwargs,
        )

    def plot_plate_id(self, ax, plate_id, **kwargs):
        """Plot a plate polygon with an associated `plate_id` onto a standard map Projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        plate_id : int
            A plate ID that identifies the continental polygon to plot. See the
            [Global EarthByte plate IDs list](https://www.earthbyte.org/webdav/ftp/earthbyte/GPlates/SampleData/FeatureCollections/Rotations/Global_EarthByte_PlateIDs_20071218.pdf)
            for a full list of plate IDs to plot.

        **kwargs :
            Keyword arguments for map presentation parameters such as
            `alpha`, etc. for plotting the grid.
            See `Matplotlib`'s `imshow` keyword arguments
            [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

        """
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        for feature in self.topologies:
            if feature.get_reconstruction_plate_id() == plate_id:
                ft_plate = shapelify_feature_polygons(
                    [feature],
                    central_meridian=central_meridian,
                    tessellate_degrees=tessellate_degrees,
                )
                return ax.add_geometries(ft_plate, crs=self.base_projection, **kwargs)

    def plot_grid(self, ax, grid, extent=[-180, 180, -90, 90], **kwargs):
        """Plot a `MaskedArray` raster or grid onto a standard map Projection.

        Notes
        -----
        Uses Matplotlib's `imshow`
        [function](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        grid : MaskedArray or `gplately.grids.Raster`
            A `MaskedArray` with elements that define a grid. The number of rows in the raster
            corresponds to the number of latitudinal coordinates, while the number of raster
            columns corresponds to the number of longitudinal coordinates.

        extent : 1d array, default=[-180,180,-90,90]
            A four-element array to specify the [min lon, max lon, min lat, max lat] with
            which to constrain the grid image. If no extents are supplied, full global
            extent is assumed.

        **kwargs :
            Keyword arguments for map presentation parameters such as
            `alpha`, etc. for plotting the grid.
            See `Matplotlib`'s `imshow` keyword arguments
            [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with the grid plotted onto the chosen map projection.
        """
        # Override matplotlib default origin ('upper')
        origin = kwargs.pop("origin", "lower")

        from .grids import Raster

        if isinstance(grid, Raster):
            # extract extent and origin
            extent = grid.extent
            origin = grid.origin
            data = grid.data
        else:
            data = grid

        return ax.imshow(
            data,
            extent=extent,
            transform=self.base_projection,
            origin=origin,
            **kwargs,
        )

    def plot_grid_from_netCDF(self, ax, filename, **kwargs):
        """Read a raster from a netCDF file, convert it to a `MaskedArray` and plot it
        onto a standard map Projection.

        Notes
        -----
        `plot_grid_from_netCDF` uses Matplotlib's `imshow`
        [function](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        filename : str
            Full path to a netCDF filename.

        **kwargs :
            Keyword arguments for map presentation parameters for
            plotting the grid. See `Matplotlib`'s `imshow` keyword arguments
            [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with the netCDF grid plotted onto the chosen map projection.
        """
        # Override matplotlib default origin ('upper')
        origin = kwargs.pop("origin", "lower")

        from .grids import read_netcdf_grid

        raster, lon_coords, lat_coords = read_netcdf_grid(filename, return_grids=True)
        extent = [lon_coords[0], lon_coords[-1], lat_coords[0], lat_coords[-1]]

        if lon_coords[0] < lat_coords[-1]:
            origin = "lower"
        else:
            origin = "upper"

        return self.plot_grid(ax, raster, extent=extent, origin=origin, **kwargs)

    def plot_plate_motion_vectors(
        self, ax, spacingX=10, spacingY=10, normalise=False, **kwargs
    ):
        """Calculate plate motion velocity vector fields at a particular geological time
        and plot them onto a standard map Projection.

        Notes
        -----
        `plot_plate_motion_vectors` generates a MeshNode domain of point features using
        given spacings in the X and Y directions (`spacingX` and `spacingY`). Each point in
        the domain is assigned a plate ID, and these IDs are used to obtain equivalent stage
        rotations of identified tectonic plates over a 5 Ma time interval. Each point and
        its stage rotation are used to calculate plate velocities at a particular geological
        time. Velocities for each domain point are represented in the north-east-down
        coordinate system and plotted on a GeoAxes.

        Vector fields can be optionally normalised by setting `normalise` to `True`. This
        makes vector arrow lengths uniform.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        spacingX : int, default=10
            The spacing in the X direction used to make the velocity domain point feature mesh.

        spacingY : int, default=10
            The spacing in the Y direction used to make the velocity domain point feature mesh.

        normalise : bool, default=False
            Choose whether to normalise the velocity magnitudes so that vector lengths are
            all equal.

        **kwargs :
            Keyword arguments for quiver presentation parameters for plotting
            the velocity vector field. See `Matplotlib` quiver keyword arguments
            [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.quiver.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with the velocity vector field plotted onto the chosen map projection.
        """

        lons = np.arange(-180, 180 + spacingX, spacingX)
        lats = np.arange(-90, 90 + spacingY, spacingY)
        lonq, latq = np.meshgrid(lons, lats)

        # create a feature from all the points
        velocity_domain_features = ptt.velocity_tools.make_GPML_velocity_feature(
            lonq.ravel(), latq.ravel()
        )

        rotation_model = self.plate_reconstruction.rotation_model
        topology_features = self.plate_reconstruction.topology_features

        delta_time = 5.0
        all_velocities = ptt.velocity_tools.get_plate_velocities(
            velocity_domain_features,
            topology_features,
            rotation_model,
            self.time,
            delta_time,
            "vector_comp",
        )

        X, Y, U, V = ptt.velocity_tools.get_x_y_u_v(lons, lats, all_velocities)

        if normalise:
            mag = np.hypot(U, V)
            mag[mag == 0] = 1
            U /= mag
            V /= mag

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", UserWarning)
            quiver = ax.quiver(X, Y, U, V, transform=self.base_projection, **kwargs)
        return quiver

    def get_continental_rifts(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed contiental rift lines.

        Notes
        -----
        The `continental_rifts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `continental_rifts` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `continental_rifts` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `continental_rifts` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No continental rifts have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.continental_rifts is None:
            raise ValueError("No continental rifts passed to PlotTopologies.")

        continental_rift_lines = shapelify_feature_lines(
            self.continental_rifts,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": continental_rift_lines}, geometry="geometry"
        )
        return gdf

    def plot_continental_rifts(self, ax, color="black", **kwargs):
        """Plot continental rifts on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with continental rifts plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_continental_rifts(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_faults(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed fault lines.

        Notes
        -----
        The `faults` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `faults` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `faults` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `faults` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No faults have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.faults is None:
            raise ValueError("No faults passed to PlotTopologies.")

        fault_lines = shapelify_feature_lines(
            self.faults,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": fault_lines}, geometry="geometry")
        return gdf

    def plot_faults(self, ax, color="black", **kwargs):
        """Plot faults on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with faults plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_faults(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_fracture_zones(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed fracture zone lines.

        Notes
        -----
        The `fracture_zones` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `fracture_zones` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `fracture_zones` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `fracture_zones` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No fracture zones have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.fracture_zones is None:
            raise ValueError("No fracture zones passed to PlotTopologies.")

        fracture_zone_lines = shapelify_feature_lines(
            self.fracture_zones,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": fracture_zone_lines}, geometry="geometry")
        return gdf

    def plot_fracture_zones(self, ax, color="black", **kwargs):
        """Plot fracture zones on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with fracture zones plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_fracture_zones(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_inferred_paleo_boundaries(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed inferred paleo boundary lines.

        Notes
        -----
        The `inferred_paleo_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `inferred_paleo_boundaries` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `inferred_paleo_boundaries` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `inferred_paleo_boundaries` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No inferred paleo boundaries have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.inferred_paleo_boundaries is None:
            raise ValueError("No inferred paleo boundaries passed to PlotTopologies.")

        inferred_paleo_boundary_lines = shapelify_feature_lines(
            self.inferred_paleo_boundaries,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": inferred_paleo_boundary_lines}, geometry="geometry"
        )
        return gdf

    def plot_inferred_paleo_boundaries(self, ax, color="black", **kwargs):
        """Plot inferred paleo boundaries on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with inferred paleo boundaries plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_inferred_paleo_boundaries(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_terrane_boundaries(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed terrane boundary lines.

        Notes
        -----
        The `terrane_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `terrane_boundaries` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `terrane_boundaries` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `terrane_boundaries` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No terrane boundaries have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.terrane_boundaries is None:
            raise ValueError("No terrane boundaries passed to PlotTopologies.")

        terrane_boundary_lines = shapelify_feature_lines(
            self.terrane_boundaries,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": terrane_boundary_lines}, geometry="geometry"
        )
        return gdf

    def plot_terrane_boundaries(self, ax, color="black", **kwargs):
        """Plot terrane boundaries on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with terrane boundaries plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_terrane_boundaries(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_transitional_crusts(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed transitional crust lines.

        Notes
        -----
        The `transitional_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `transitional_crusts` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `transitional_crusts` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `transitional_crusts` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No transitional crusts have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.transitional_crusts is None:
            raise ValueError("No transitional crusts passed to PlotTopologies.")

        transitional_crust_lines = shapelify_feature_lines(
            self.transitional_crusts,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": transitional_crust_lines}, geometry="geometry"
        )
        return gdf

    def plot_transitional_crusts(self, ax, color="black", **kwargs):
        """Plot transitional crust on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with transitional crust plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_transitional_crusts(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_orogenic_belts(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed orogenic belt lines.

        Notes
        -----
        The `orogenic_belts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `orogenic_belts` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `orogenic_belts` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `orogenic_belts` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No orogenic belts have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.orogenic_belts is None:
            raise ValueError("No orogenic belts passed to PlotTopologies.")

        orogenic_belt_lines = shapelify_feature_lines(
            self.orogenic_belts,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": orogenic_belt_lines}, geometry="geometry")
        return gdf

    def plot_orogenic_belts(self, ax, color="black", **kwargs):
        """Plot orogenic belts on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with orogenic belts plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_orogenic_belts(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_sutures(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed suture lines.

        Notes
        -----
        The `sutures` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `sutures` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `sutures` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `sutures` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No sutures have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.sutures is None:
            raise ValueError("No sutures passed to PlotTopologies.")

        suture_lines = shapelify_feature_lines(
            self.sutures,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": suture_lines}, geometry="geometry")
        return gdf

    def plot_sutures(self, ax, color="black", **kwargs):
        """Plot sutures on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with sutures plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_sutures(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_continental_crusts(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental crust lines.

        Notes
        -----
        The `continental_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `continental_crusts` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `continental_crusts` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `continental_crusts` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No continental crust topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.continental_crusts is None:
            raise ValueError(
                "No continental crust topologies passed to PlotTopologies."
            )

        continental_crust_lines = shapelify_feature_lines(
            self.continental_crusts,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": continental_crust_lines}, geometry="geometry"
        )
        return gdf

    def plot_continental_crusts(self, ax, color="black", **kwargs):
        """Plot continental crust lines on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with continental crust lines plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_continental_crusts(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_extended_continental_crusts(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed extended continental crust lines.

        Notes
        -----
        The `extended_continental_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `extended_continental_crusts` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `extended_continental_crusts` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `extended_continental_crusts` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No extended continental crust topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.extended_continental_crusts is None:
            raise ValueError(
                "No extended continental crust topologies passed to PlotTopologies."
            )

        extended_continental_crust_lines = shapelify_feature_lines(
            self.extended_continental_crusts,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": extended_continental_crust_lines}, geometry="geometry"
        )
        return gdf

    def plot_extended_continental_crusts(self, ax, color="black", **kwargs):
        """Plot extended continental crust lines on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with extended continental crust lines plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_extended_continental_crusts(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_passive_continental_boundaries(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed passive continental boundary lines.

        Notes
        -----
        The `passive_continental_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `passive_continental_boundaries` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `passive_continental_boundaries` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `passive_continental_boundaries` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No passive continental boundaries have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.passive_continental_boundaries is None:
            raise ValueError(
                "No passive continental boundaries passed to PlotTopologies."
            )

        passive_continental_boundary_lines = shapelify_feature_lines(
            self.passive_continental_boundaries,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": passive_continental_boundary_lines}, geometry="geometry"
        )
        return gdf

    def plot_passive_continental_boundaries(self, ax, color="black", **kwargs):
        """Plot passive continental boundaries on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with passive continental boundaries plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_passive_continental_boundaries(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_slab_edges(self, central_meridian=0.0, tessellate_degrees=None):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed slab edge lines.

        Notes
        -----
        The `slab_edges` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `slab_edges` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `slab_edges` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `slab_edges` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No slab edges have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.slab_edges is None:
            raise ValueError("No slab edges passed to PlotTopologies.")

        slab_edge_lines = shapelify_feature_lines(
            self.slab_edges,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": slab_edge_lines}, geometry="geometry")
        return gdf

    def plot_slab_edges(self, ax, color="black", **kwargs):
        """Plot slab edges on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with slab edges plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_slab_edges(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_misc_transforms(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed misc transform lines.

        Notes
        -----
        The `misc_transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `misc_transforms` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `misc_transforms` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `misc_transforms` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No miscellaneous transforms have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.misc_transforms is None:
            raise ValueError("No miscellaneous transforms passed to PlotTopologies.")

        misc_transform_lines = shapelify_feature_lines(
            self.misc_transforms,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame({"geometry": misc_transform_lines}, geometry="geometry")
        return gdf

    def plot_misc_transforms(self, ax, color="black", **kwargs):
        """Plot miscellaneous transform boundaries on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with miscellaneous transform boundaries plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_misc_transforms(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_unclassified_features(
        self,
        central_meridian=0.0,
        tessellate_degrees=None,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

        Notes
        -----
        The `unclassified_features` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `unclassified_features` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `unclassified_features` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `unclassified_features` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No unclassified features have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.unclassified_features is None:
            raise ValueError("No unclassified features passed to PlotTopologies.")

        unclassified_feature_lines = shapelify_feature_lines(
            self.unclassified_features,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        gdf = gpd.GeoDataFrame(
            {"geometry": unclassified_feature_lines}, geometry="geometry"
        )
        return gdf

    def plot_unclassified_features(self, ax, color="black", **kwargs):
        """Plot GPML unclassified features on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with unclassified features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", None)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_unclassified_features(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_all_topologies(
        self,
        central_meridian=0.0,
        tessellate_degrees=1,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

        Notes
        -----
        The `topologies` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
        parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
        either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 #Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `topologies` are reconstructed, they are
        converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

        Returns
        -------
        gdf : instance of <geopandas.GeoDataFrame>
            A pandas.DataFrame that has a column with `topologies` geometry.
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
            `topologies` to the requested `time` and thus populate the GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.topologies is None:
            raise ValueError("No topologies passed to PlotTopologies.")

        all_topologies = shapelify_features(
            self.topologies,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )

        # get plate IDs and feature types to add to geodataframe
        plate_IDs = []
        feature_types = []
        feature_names = []
        for topo in self.topologies:
            ft_type = topo.get_feature_type()

            plate_IDs.append(topo.get_reconstruction_plate_id())
            feature_types.append(ft_type)
            feature_names.append(ft_type.get_name())

        gdf = gpd.GeoDataFrame(
            {
                "geometry": all_topologies,
                "reconstruction_plate_ID": plate_IDs,
                "feature_type": feature_types,
                "feature_name": feature_names,
            },
            geometry="geometry",
        )
        return gdf

    def plot_all_topologies(self, ax, color="black", **kwargs):
        """Plot all topologies on a standard map projection.

        Parameters
        ----------
        ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default=’black’
            The colour of the trench lines. By default, it is set to black.

        **kwargs :
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with unclassified features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_all_topologies(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)

    def get_all_topological_sections(
        self,
        central_meridian=0.0,
        tessellate_degrees=1,
    ):
        """Create a geopandas.GeoDataFrame object containing geometries of
        resolved topological sections.

        Parameters
        ----------
        central_meridian : float
            Central meridian around which to perform wrapping; default: 0.0.
        tessellate_degrees : float or None
            If provided, geometries will be tessellated to this resolution prior
            to wrapping.

        Returns
        -------
        geopandas.GeoDataFrame
            A pandas.DataFrame that has a column with `topologies` geometry.

        Raises
        ------
        ValueError
            If the optional `time` parameter has not been passed to
            `PlotTopologies`. This is needed to construct `topologies`
            to the requested `time` and thus populate the GeoDataFrame.

        Notes
        -----
        The `topologies` needed to produce the GeoDataFrame are automatically
        constructed if the optional `time` parameter is passed to the
        `PlotTopologies` object before calling this function. `time` can be
        passed either when `PlotTopologies` is first called...

            gplot = gplately.PlotTopologies(..., time=100,...)

        or anytime afterwards, by setting:

            time = 100 # Ma
            gplot.time = time

        ...after which this function can be re-run. Once the `topologies`
        are reconstructed, they are converted into Shapely lines whose
        coordinates are passed to a geopandas GeoDataFrame.
        """
        if self._time is None:
            raise ValueError(
                "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
            )

        if self.topologies is None:
            raise ValueError("No topologies passed to PlotTopologies.")

        topologies_list = [
            *self.ridge_transforms,
            *self.ridges,
            *self.transforms,
            *self.trenches,
            *self.trench_left,
            *self.trench_right,
            *self.other,
        ]

        # get plate IDs and feature types to add to geodataframe
        geometries = []
        plate_IDs = []
        feature_types = []
        feature_names = []
        for topo in topologies_list:
            converted = shapelify_features(
                topo,
                central_meridian=central_meridian,
                tessellate_degrees=tessellate_degrees,
            )
            if not isinstance(converted, BaseGeometry):
                if len(converted) > 1:
                    tmp = []
                    for i in converted:
                        if isinstance(i, BaseMultipartGeometry):
                            tmp.extend(list(i.geoms))
                        else:
                            tmp.append(i)
                    converted = tmp
                    del tmp
                    converted = linemerge(converted)
                elif len(converted) == 1:
                    converted = converted[0]
                else:
                    continue
            geometries.append(converted)
            plate_IDs.append(topo.get_reconstruction_plate_id())
            feature_types.append(topo.get_feature_type())
            feature_names.append(topo.get_name())

        gdf = gpd.GeoDataFrame(
            {
                "geometry": geometries,
                "reconstruction_plate_ID": plate_IDs,
                "feature_type": feature_types,
                "feature_name": feature_names,
            },
            geometry="geometry",
        )
        return gdf

    def plot_all_topological_sections(self, ax, color="black", **kwargs):
        """Plot all topologies on a standard map projection.

        Parameters
        ----------
        ax : cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot
            A subclass of `matplotlib.axes.Axes` which represents a map Projection.
            The map should be set at a particular Cartopy projection.

        color : str, default='black'
            The colour of the topology lines. By default, it is set to black.

        **kwargs
            Keyword arguments for parameters such as `alpha`, etc.
            for plotting trench geometries.
            See `Matplotlib` keyword arguments
            [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

        Returns
        -------
        ax : instance of <geopandas.GeoDataFrame.plot>
            A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
            with unclassified features plotted onto the chosen map projection.
        """
        if "transform" in kwargs.keys():
            warnings.warn(
                "'transform' keyword argument is ignored by PlotTopologies",
                UserWarning,
            )
            kwargs.pop("transform")
        tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
        central_meridian = kwargs.pop("central_meridian", None)
        if central_meridian is None:
            central_meridian = _meridian_from_ax(ax)

        gdf = self.get_all_topological_sections(
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if hasattr(ax, "projection"):
            gdf = _clean_polygons(data=gdf, projection=ax.projection)
        else:
            kwargs["transform"] = self.base_projection
        return gdf.plot(ax=ax, color=color, **kwargs)

Instance variables

var anchor_plate_id

Anchor plate ID for reconstruction. Must be an integer >= 0.

Expand source code
@property
def anchor_plate_id(self):
    """Anchor plate ID for reconstruction. Must be an integer >= 0."""
    return self._anchor_plate_id
var time

The reconstruction time.

Expand source code
@property
def time(self):
    """The reconstruction time."""
    return self._time

Methods

def get_all_topological_sections(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of resolved topological sections.

Parameters

central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Returns

geopandas.GeoDataFrame
A pandas.DataFrame that has a column with topologies geometry.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct topologies to the requested time and thus populate the GeoDataFrame.

Notes

The topologies needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 # Ma
gplot.time = time

…after which this function can be re-run. Once the topologies are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Expand source code
def get_all_topological_sections(
    self,
    central_meridian=0.0,
    tessellate_degrees=1,
):
    """Create a geopandas.GeoDataFrame object containing geometries of
    resolved topological sections.

    Parameters
    ----------
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Returns
    -------
    geopandas.GeoDataFrame
        A pandas.DataFrame that has a column with `topologies` geometry.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to
        `PlotTopologies`. This is needed to construct `topologies`
        to the requested `time` and thus populate the GeoDataFrame.

    Notes
    -----
    The `topologies` needed to produce the GeoDataFrame are automatically
    constructed if the optional `time` parameter is passed to the
    `PlotTopologies` object before calling this function. `time` can be
    passed either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 # Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `topologies`
    are reconstructed, they are converted into Shapely lines whose
    coordinates are passed to a geopandas GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.topologies is None:
        raise ValueError("No topologies passed to PlotTopologies.")

    topologies_list = [
        *self.ridge_transforms,
        *self.ridges,
        *self.transforms,
        *self.trenches,
        *self.trench_left,
        *self.trench_right,
        *self.other,
    ]

    # get plate IDs and feature types to add to geodataframe
    geometries = []
    plate_IDs = []
    feature_types = []
    feature_names = []
    for topo in topologies_list:
        converted = shapelify_features(
            topo,
            central_meridian=central_meridian,
            tessellate_degrees=tessellate_degrees,
        )
        if not isinstance(converted, BaseGeometry):
            if len(converted) > 1:
                tmp = []
                for i in converted:
                    if isinstance(i, BaseMultipartGeometry):
                        tmp.extend(list(i.geoms))
                    else:
                        tmp.append(i)
                converted = tmp
                del tmp
                converted = linemerge(converted)
            elif len(converted) == 1:
                converted = converted[0]
            else:
                continue
        geometries.append(converted)
        plate_IDs.append(topo.get_reconstruction_plate_id())
        feature_types.append(topo.get_feature_type())
        feature_names.append(topo.get_name())

    gdf = gpd.GeoDataFrame(
        {
            "geometry": geometries,
            "reconstruction_plate_ID": plate_IDs,
            "feature_type": feature_types,
            "feature_name": feature_names,
        },
        geometry="geometry",
    )
    return gdf
def get_all_topologies(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

Notes

The topologies needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the topologies are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with topologies geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct topologies to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_all_topologies(
    self,
    central_meridian=0.0,
    tessellate_degrees=1,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

    Notes
    -----
    The `topologies` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `topologies` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `topologies` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `topologies` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.topologies is None:
        raise ValueError("No topologies passed to PlotTopologies.")

    all_topologies = shapelify_features(
        self.topologies,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )

    # get plate IDs and feature types to add to geodataframe
    plate_IDs = []
    feature_types = []
    feature_names = []
    for topo in self.topologies:
        ft_type = topo.get_feature_type()

        plate_IDs.append(topo.get_reconstruction_plate_id())
        feature_types.append(ft_type)
        feature_names.append(ft_type.get_name())

    gdf = gpd.GeoDataFrame(
        {
            "geometry": all_topologies,
            "reconstruction_plate_ID": plate_IDs,
            "feature_type": feature_types,
            "feature_name": feature_names,
        },
        geometry="geometry",
    )
    return gdf
def get_coastlines(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed coastline polygons.

Notes

The coastlines needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the coastlines are reconstructed, they are converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with coastlines geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct coastlines to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_coastlines(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed coastline polygons.

    Notes
    -----
    The `coastlines` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `coastlines` are reconstructed, they are
    converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `coastlines` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `coastlines` to the requested `time` and thus populate the GeoDataFrame.

    """
    if self._time is None:
        raise ValueError(
            "No coastlines have been resolved. Set `PlotTopologies.time` to construct coastlines."
        )

    if self.coastlines is None:
        raise ValueError("Supply coastlines to PlotTopologies object")

    coastline_polygons = shapelify_feature_polygons(
        self.coastlines,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": coastline_polygons}, geometry="geometry")
    return gdf
def get_continent_ocean_boundaries(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed continent-ocean boundary lines.

Notes

The COBs needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the COBs are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with COBs geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct COBs to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_continent_ocean_boundaries(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continent-ocean
    boundary lines.

    Notes
    -----
    The `COBs` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `COBs` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `COBs` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `COBs` to the requested `time` and thus populate the GeoDataFrame.

    """
    if self._time is None:
        raise ValueError(
            "No geometries have been resolved. Set `PlotTopologies.time` to construct topologies."
        )

    if self.COBs is None:
        raise ValueError("Supply COBs to PlotTopologies object")

    COB_lines = shapelify_feature_lines(
        self.COBs,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": COB_lines}, geometry="geometry")
    return gdf
def get_continental_crusts(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental crust lines.

Notes

The continental_crusts needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the continental_crusts are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with continental_crusts geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct continental_crusts to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_continental_crusts(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental crust lines.

    Notes
    -----
    The `continental_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `continental_crusts` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `continental_crusts` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `continental_crusts` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No continental crust topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.continental_crusts is None:
        raise ValueError(
            "No continental crust topologies passed to PlotTopologies."
        )

    continental_crust_lines = shapelify_feature_lines(
        self.continental_crusts,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": continental_crust_lines}, geometry="geometry"
    )
    return gdf
def get_continental_rifts(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed contiental rift lines.

Notes

The continental_rifts needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the continental_rifts are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with continental_rifts geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct continental_rifts to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_continental_rifts(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed contiental rift lines.

    Notes
    -----
    The `continental_rifts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `continental_rifts` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `continental_rifts` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `continental_rifts` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No continental rifts have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.continental_rifts is None:
        raise ValueError("No continental rifts passed to PlotTopologies.")

    continental_rift_lines = shapelify_feature_lines(
        self.continental_rifts,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": continental_rift_lines}, geometry="geometry"
    )
    return gdf
def get_continents(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental polygons.

Notes

The continents needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the continents are reconstructed, they are converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with continents geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct continents to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_continents(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed continental polygons.

    Notes
    -----
    The `continents` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `continents` are reconstructed, they are
    converted into Shapely polygons whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `continents` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `continents` to the requested `time` and thus populate the GeoDataFrame.

    """
    if self._time is None:
        raise ValueError(
            "No continents have been resolved. Set `PlotTopologies.time` to construct continents."
        )

    if self.continents is None:
        raise ValueError("Supply continents to PlotTopologies object")

    continent_polygons = shapelify_feature_polygons(
        self.continents,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": continent_polygons}, geometry="geometry")
    return gdf
def get_extended_continental_crusts(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed extended continental crust lines.

Notes

The extended_continental_crusts needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the extended_continental_crusts are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with extended_continental_crusts geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct extended_continental_crusts to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_extended_continental_crusts(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed extended continental crust lines.

    Notes
    -----
    The `extended_continental_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `extended_continental_crusts` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `extended_continental_crusts` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `extended_continental_crusts` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No extended continental crust topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.extended_continental_crusts is None:
        raise ValueError(
            "No extended continental crust topologies passed to PlotTopologies."
        )

    extended_continental_crust_lines = shapelify_feature_lines(
        self.extended_continental_crusts,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": extended_continental_crust_lines}, geometry="geometry"
    )
    return gdf
def get_faults(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed fault lines.

Notes

The faults needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the faults are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with faults geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct faults to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_faults(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed fault lines.

    Notes
    -----
    The `faults` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `faults` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `faults` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `faults` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No faults have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.faults is None:
        raise ValueError("No faults passed to PlotTopologies.")

    fault_lines = shapelify_feature_lines(
        self.faults,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": fault_lines}, geometry="geometry")
    return gdf
def get_feature(self, feature, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed features.

Notes

The feature needed to produce the GeoDataFrame should already be constructed to a time. This function converts the feature into a set of Shapely geometries whose coordinates are passed to a geopandas GeoDataFrame.

Parameters

feature : instance of <pygplates.Feature>
A feature reconstructed to time.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with feature geometries.
Expand source code
def get_feature(
    self,
    feature,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed features.

    Notes
    -----
    The feature needed to produce the GeoDataFrame should already be constructed to a `time`.
    This function converts the feature into a set of Shapely geometries whose coordinates are
    passed to a geopandas GeoDataFrame.

    Parameters
    ----------
    feature : instance of <pygplates.Feature>
        A feature reconstructed to `time`.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `feature` geometries.

    """
    shp = shapelify_features(
        feature,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": shp}, geometry="geometry")
    return gdf
def get_fracture_zones(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed fracture zone lines.

Notes

The fracture_zones needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the fracture_zones are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with fracture_zones geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct fracture_zones to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_fracture_zones(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed fracture zone lines.

    Notes
    -----
    The `fracture_zones` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `fracture_zones` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `fracture_zones` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `fracture_zones` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No fracture zones have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.fracture_zones is None:
        raise ValueError("No fracture zones passed to PlotTopologies.")

    fracture_zone_lines = shapelify_feature_lines(
        self.fracture_zones,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": fracture_zone_lines}, geometry="geometry")
    return gdf
def get_inferred_paleo_boundaries(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed inferred paleo boundary lines.

Notes

The inferred_paleo_boundaries needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the inferred_paleo_boundaries are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with inferred_paleo_boundaries geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct inferred_paleo_boundaries to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_inferred_paleo_boundaries(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed inferred paleo boundary lines.

    Notes
    -----
    The `inferred_paleo_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `inferred_paleo_boundaries` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `inferred_paleo_boundaries` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `inferred_paleo_boundaries` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No inferred paleo boundaries have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.inferred_paleo_boundaries is None:
        raise ValueError("No inferred paleo boundaries passed to PlotTopologies.")

    inferred_paleo_boundary_lines = shapelify_feature_lines(
        self.inferred_paleo_boundaries,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": inferred_paleo_boundary_lines}, geometry="geometry"
    )
    return gdf
def get_misc_boundaries(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of other reconstructed lines.

Notes

The other geometries needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the other geometries are reconstructed, they are converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with other geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct other geometries to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_misc_boundaries(self, central_meridian=0.0, tessellate_degrees=1):
    """Create a geopandas.GeoDataFrame object containing geometries of other reconstructed lines.

    Notes
    -----
    The `other` geometries needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `other` geometries are reconstructed, they are
    converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `other` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `other` geometries to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No miscellaneous topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.other is None:
        raise ValueError("No miscellaneous topologies passed to PlotTopologies.")

    lines = shapelify_features(
        self.other,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": lines}, geometry="geometry")
    return gdf
def get_misc_transforms(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed misc transform lines.

Notes

The misc_transforms needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the misc_transforms are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with misc_transforms geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct misc_transforms to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_misc_transforms(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed misc transform lines.

    Notes
    -----
    The `misc_transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `misc_transforms` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `misc_transforms` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `misc_transforms` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No miscellaneous transforms have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.misc_transforms is None:
        raise ValueError("No miscellaneous transforms passed to PlotTopologies.")

    misc_transform_lines = shapelify_feature_lines(
        self.misc_transforms,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": misc_transform_lines}, geometry="geometry")
    return gdf
def get_orogenic_belts(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed orogenic belt lines.

Notes

The orogenic_belts needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the orogenic_belts are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with orogenic_belts geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct orogenic_belts to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_orogenic_belts(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed orogenic belt lines.

    Notes
    -----
    The `orogenic_belts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `orogenic_belts` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `orogenic_belts` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `orogenic_belts` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No orogenic belts have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.orogenic_belts is None:
        raise ValueError("No orogenic belts passed to PlotTopologies.")

    orogenic_belt_lines = shapelify_feature_lines(
        self.orogenic_belts,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": orogenic_belt_lines}, geometry="geometry")
    return gdf
def get_passive_continental_boundaries(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed passive continental boundary lines.

Notes

The passive_continental_boundaries needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the passive_continental_boundaries are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with passive_continental_boundaries geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct passive_continental_boundaries to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_passive_continental_boundaries(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed passive continental boundary lines.

    Notes
    -----
    The `passive_continental_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `passive_continental_boundaries` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `passive_continental_boundaries` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `passive_continental_boundaries` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No passive continental boundaries have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.passive_continental_boundaries is None:
        raise ValueError(
            "No passive continental boundaries passed to PlotTopologies."
        )

    passive_continental_boundary_lines = shapelify_feature_lines(
        self.passive_continental_boundaries,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": passive_continental_boundary_lines}, geometry="geometry"
    )
    return gdf
def get_ridges(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge lines.

Notes

The ridges needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the ridges are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with ridges geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct ridges to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_ridges(self, central_meridian=0.0, tessellate_degrees=1):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge lines.

    Notes
    -----
    The `ridges` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `ridges` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `ridges` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `ridges` to the requested `time` and thus populate the GeoDataFrame.

    """
    if self._time is None:
        raise ValueError(
            "No ridges have been resolved. Set `PlotTopologies.time` to construct ridges."
        )

    if self.ridges is None:
        raise ValueError("No ridge topologies passed to PlotTopologies.")

    ridge_lines = shapelify_feature_lines(
        self.ridges,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": ridge_lines}, geometry="geometry")
    return gdf
def get_ridges_and_transforms(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge and transform lines.

Notes

The ridge_transforms needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the ridge_transforms are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with ridges geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct ridge_transforms to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_ridges_and_transforms(
    self,
    central_meridian=0.0,
    tessellate_degrees=1,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed ridge and transform lines.

    Notes
    -----
    The `ridge_transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `ridge_transforms` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `ridges` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `ridge_transforms` to the requested `time` and thus populate the GeoDataFrame.

    """
    if self._time is None:
        raise ValueError(
            "No ridges and transforms have been resolved. Set `PlotTopologies.time` to construct ridges and transforms."
        )

    if self.ridge_transforms is None:
        raise ValueError(
            "No ridge and transform topologies passed to PlotTopologies."
        )

    ridge_transform_lines = shapelify_feature_lines(
        self.ridge_transforms,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": ridge_transform_lines}, geometry="geometry")
    return gdf
def get_slab_edges(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed slab edge lines.

Notes

The slab_edges needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the slab_edges are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with slab_edges geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct slab_edges to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_slab_edges(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed slab edge lines.

    Notes
    -----
    The `slab_edges` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `slab_edges` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `slab_edges` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `slab_edges` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No slab edges have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.slab_edges is None:
        raise ValueError("No slab edges passed to PlotTopologies.")

    slab_edge_lines = shapelify_feature_lines(
        self.slab_edges,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": slab_edge_lines}, geometry="geometry")
    return gdf
def get_subduction_direction(self)

Create a geopandas.GeoDataFrame object containing geometries of trench directions.

Notes

The trench_left and trench_right geometries needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the other geometries are reconstructed, they are converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf_left : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with trench_left geometry.
gdf_right : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with trench_right geometry.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct trench_left or trench_right geometries to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_subduction_direction(self):
    """Create a geopandas.GeoDataFrame object containing geometries of trench directions.

    Notes
    -----
    The `trench_left` and `trench_right` geometries needed to produce the GeoDataFrame are automatically
    constructed if the optional `time` parameter is passed to the `PlotTopologies` object before calling
    this function. `time` can be passed either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `other` geometries are reconstructed, they are
    converted into Shapely features whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf_left : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `trench_left` geometry.
    gdf_right : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `trench_right` geometry.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `trench_left` or `trench_right` geometries to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No miscellaneous topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.trench_left is None or self.trench_right is None:
        raise ValueError(
            "No trench_left or trench_right topologies passed to PlotTopologies."
        )

    trench_left_features = shapelify_feature_lines(self.trench_left)
    trench_right_features = shapelify_feature_lines(self.trench_right)

    gdf_left = gpd.GeoDataFrame(
        {"geometry": trench_left_features}, geometry="geometry"
    )
    gdf_right = gpd.GeoDataFrame(
        {"geometry": trench_right_features}, geometry="geometry"
    )

    return gdf_left, gdf_right
def get_sutures(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed suture lines.

Notes

The sutures needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the sutures are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with sutures geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct sutures to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_sutures(self, central_meridian=0.0, tessellate_degrees=None):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed suture lines.

    Notes
    -----
    The `sutures` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `sutures` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `sutures` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `sutures` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No sutures have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.sutures is None:
        raise ValueError("No sutures passed to PlotTopologies.")

    suture_lines = shapelify_feature_lines(
        self.sutures,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": suture_lines}, geometry="geometry")
    return gdf
def get_terrane_boundaries(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed terrane boundary lines.

Notes

The terrane_boundaries needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the terrane_boundaries are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with terrane_boundaries geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct terrane_boundaries to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_terrane_boundaries(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed terrane boundary lines.

    Notes
    -----
    The `terrane_boundaries` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `terrane_boundaries` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `terrane_boundaries` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `terrane_boundaries` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No terrane boundaries have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.terrane_boundaries is None:
        raise ValueError("No terrane boundaries passed to PlotTopologies.")

    terrane_boundary_lines = shapelify_feature_lines(
        self.terrane_boundaries,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": terrane_boundary_lines}, geometry="geometry"
    )
    return gdf
def get_transforms(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed transform lines.

Notes

The transforms needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the transforms are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with transforms geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct transforms to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_transforms(self, central_meridian=0.0, tessellate_degrees=1):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed transform lines.

    Notes
    -----
    The `transforms` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `transforms` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `transforms` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `transforms` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No transforms have been resolved. Set `PlotTopologies.time` to construct transforms."
        )

    if self.transforms is None:
        raise ValueError("No transform topologies passed to PlotTopologies.")

    transform_lines = shapelify_feature_lines(
        self.transforms,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": transform_lines}, geometry="geometry")
    return gdf
def get_transitional_crusts(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed transitional crust lines.

Notes

The transitional_crusts needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the transitional_crusts are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with transitional_crusts geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct transitional_crusts to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_transitional_crusts(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed transitional crust lines.

    Notes
    -----
    The `transitional_crusts` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `transitional_crusts` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `transitional_crusts` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `transitional_crusts` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No transitional crusts have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.transitional_crusts is None:
        raise ValueError("No transitional crusts passed to PlotTopologies.")

    transitional_crust_lines = shapelify_feature_lines(
        self.transitional_crusts,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": transitional_crust_lines}, geometry="geometry"
    )
    return gdf
def get_trenches(self, central_meridian=0.0, tessellate_degrees=1)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed trench lines.

Notes

The trenches needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the trenches are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with trenches geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct trenches to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_trenches(self, central_meridian=0.0, tessellate_degrees=1):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed trench lines.

    Notes
    -----
    The `trenches` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `trenches` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `trenches` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `trenches` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No trenches have been resolved. Set `PlotTopologies.time` to construct trenches."
        )

    if self.trenches is None:
        raise ValueError("No trenches passed to PlotTopologies.")

    trench_lines = shapelify_feature_lines(
        self.trenches,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame({"geometry": trench_lines}, geometry="geometry")
    return gdf
def get_unclassified_features(self, central_meridian=0.0, tessellate_degrees=None)

Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

Notes

The unclassified_features needed to produce the GeoDataFrame are automatically constructed if the optional time parameter is passed to the PlotTopologies object before calling this function. time can be passed either when PlotTopologies is first called…

gplot = gplately.PlotTopologies(..., time=100,...)

or anytime afterwards, by setting:

time = 100 #Ma
gplot.time = time

…after which this function can be re-run. Once the unclassified_features are reconstructed, they are converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

Returns

gdf : instance of <geopandas.GeoDataFrame>
A pandas.DataFrame that has a column with unclassified_features geometry.
central_meridian : float
Central meridian around which to perform wrapping; default: 0.0.
tessellate_degrees : float or None
If provided, geometries will be tessellated to this resolution prior to wrapping.

Raises

ValueError
If the optional time parameter has not been passed to PlotTopologies. This is needed to construct unclassified_features to the requested time and thus populate the GeoDataFrame.
Expand source code
def get_unclassified_features(
    self,
    central_meridian=0.0,
    tessellate_degrees=None,
):
    """Create a geopandas.GeoDataFrame object containing geometries of reconstructed unclassified feature lines.

    Notes
    -----
    The `unclassified_features` needed to produce the GeoDataFrame are automatically constructed if the optional `time`
    parameter is passed to the `PlotTopologies` object before calling this function. `time` can be passed
    either when `PlotTopologies` is first called...

        gplot = gplately.PlotTopologies(..., time=100,...)

    or anytime afterwards, by setting:

        time = 100 #Ma
        gplot.time = time

    ...after which this function can be re-run. Once the `unclassified_features` are reconstructed, they are
    converted into Shapely lines whose coordinates are passed to a geopandas GeoDataFrame.

    Returns
    -------
    gdf : instance of <geopandas.GeoDataFrame>
        A pandas.DataFrame that has a column with `unclassified_features` geometry.
    central_meridian : float
        Central meridian around which to perform wrapping; default: 0.0.
    tessellate_degrees : float or None
        If provided, geometries will be tessellated to this resolution prior
        to wrapping.

    Raises
    ------
    ValueError
        If the optional `time` parameter has not been passed to `PlotTopologies`. This is needed to construct
        `unclassified_features` to the requested `time` and thus populate the GeoDataFrame.
    """
    if self._time is None:
        raise ValueError(
            "No unclassified features have been resolved. Set `PlotTopologies.time` to construct them."
        )

    if self.unclassified_features is None:
        raise ValueError("No unclassified features passed to PlotTopologies.")

    unclassified_feature_lines = shapelify_feature_lines(
        self.unclassified_features,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    gdf = gpd.GeoDataFrame(
        {"geometry": unclassified_feature_lines}, geometry="geometry"
    )
    return gdf
def plot_all_topological_sections(self, ax, color='black', **kwargs)

Plot all topologies on a standard map projection.

Parameters

ax : cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default='black'
The colour of the topology lines. By default, it is set to black.
**kwargs
Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with unclassified features plotted onto the chosen map projection.
Expand source code
def plot_all_topological_sections(self, ax, color="black", **kwargs):
    """Plot all topologies on a standard map projection.

    Parameters
    ----------
    ax : cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default='black'
        The colour of the topology lines. By default, it is set to black.

    **kwargs
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with unclassified features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_all_topological_sections(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, color=color, **kwargs)
def plot_all_topologies(self, ax, color='black', **kwargs)

Plot all topologies on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with unclassified features plotted onto the chosen map projection.
Expand source code
def plot_all_topologies(self, ax, color="black", **kwargs):
    """Plot all topologies on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with unclassified features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_all_topologies(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_coastlines(self, ax, **kwargs)

Plot reconstructed coastline polygons onto a standard map Projection.

Notes

The coastlines for plotting are accessed from the PlotTopologies object's coastlines attribute. These coastlines are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed coastlines are added onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map resentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.

**kwargs : Keyword arguments for parameters such as facecolor, alpha, etc. for plotting coastline geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with coastline features plotted onto the chosen map projection.
Expand source code
def plot_coastlines(self, ax, **kwargs):
    """Plot reconstructed coastline polygons onto a standard map Projection.

    Notes
    -----
    The `coastlines` for plotting are accessed from the `PlotTopologies` object's
    `coastlines` attribute. These `coastlines` are reconstructed to the `time`
    passed to the `PlotTopologies` object and converted into Shapely polylines. The
    reconstructed `coastlines` are added onto the GeoAxes or GeoAxesSubplot map `ax` using
    GeoPandas.
    Map resentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword
    arguments.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    **kwargs :
        Keyword arguments for parameters such as `facecolor`, `alpha`,
        etc. for plotting coastline geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with coastline features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_coastlines(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, **kwargs)
def plot_continent_ocean_boundaries(self, ax, **kwargs)

Plot reconstructed continent-ocean boundary (COB) polygons onto a standard map Projection.

Notes

The COBs for plotting are accessed from the PlotTopologies object's COBs attribute. These COBs are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed COBs are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

These COBs are transformed into shapely geometries and added onto the chosen map for a specific geological time (supplied to the PlotTopologies object). Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.

**kwargs : Keyword arguments for parameters such as facecolor, alpha, etc. for plotting COB geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with COB features plotted onto the chosen map projection.
Expand source code
def plot_continent_ocean_boundaries(self, ax, **kwargs):
    """Plot reconstructed continent-ocean boundary (COB) polygons onto a standard
    map Projection.

    Notes
    -----
    The `COBs` for plotting are accessed from the `PlotTopologies` object's
    `COBs` attribute. These `COBs` are reconstructed to the `time`
    passed to the `PlotTopologies` object and converted into Shapely polylines.
    The reconstructed `COBs` are plotted onto the GeoAxes or GeoAxesSubplot map
    `ax` using GeoPandas. Map presentation details (e.g. `facecolor`, `edgecolor`, `alpha`…)
    are permitted as keyword arguments.

    These COBs are transformed into shapely
    geometries and added onto the chosen map for a specific geological time (supplied to the
    PlotTopologies object). Map presentation details (e.g. facecolor, edgecolor, alpha…)
    are permitted.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    **kwargs :
        Keyword arguments for parameters such as `facecolor`, `alpha`,
        etc. for plotting COB geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with COB features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_continent_ocean_boundaries(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, **kwargs)
def plot_continental_crusts(self, ax, color='black', **kwargs)

Plot continental crust lines on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with continental crust lines plotted onto the chosen map projection.
Expand source code
def plot_continental_crusts(self, ax, color="black", **kwargs):
    """Plot continental crust lines on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with continental crust lines plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_continental_crusts(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_continental_rifts(self, ax, color='black', **kwargs)

Plot continental rifts on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with continental rifts plotted onto the chosen map projection.
Expand source code
def plot_continental_rifts(self, ax, color="black", **kwargs):
    """Plot continental rifts on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with continental rifts plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_continental_rifts(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_continents(self, ax, **kwargs)

Plot reconstructed continental polygons onto a standard map Projection.

Notes

The continents for plotting are accessed from the PlotTopologies object's continents attribute. These continents are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polygons. The reconstructed coastlines are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.

**kwargs : Keyword arguments for parameters such as facecolor, alpha, etc. for plotting continental geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with continent features plotted onto the chosen map projection.
Expand source code
def plot_continents(self, ax, **kwargs):
    """Plot reconstructed continental polygons onto a standard map Projection.

    Notes
    -----
    The `continents` for plotting are accessed from the `PlotTopologies` object's
    `continents` attribute. These `continents` are reconstructed to the `time`
    passed to the `PlotTopologies` object and converted into Shapely polygons.
    The reconstructed `coastlines` are plotted onto the GeoAxes or GeoAxesSubplot map `ax` using
    GeoPandas.
    Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as
    keyword arguments.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    **kwargs :
        Keyword arguments for parameters such as `facecolor`, `alpha`,
        etc. for plotting continental geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with continent features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_continents(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, **kwargs)
def plot_extended_continental_crusts(self, ax, color='black', **kwargs)

Plot extended continental crust lines on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with extended continental crust lines plotted onto the chosen map projection.
Expand source code
def plot_extended_continental_crusts(self, ax, color="black", **kwargs):
    """Plot extended continental crust lines on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with extended continental crust lines plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_extended_continental_crusts(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_faults(self, ax, color='black', **kwargs)

Plot faults on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with faults plotted onto the chosen map projection.
Expand source code
def plot_faults(self, ax, color="black", **kwargs):
    """Plot faults on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with faults plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_faults(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_feature(self, ax, feature, **kwargs)

Plot pygplates.FeatureCollection or pygplates.Feature onto a map.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.

**kwargs : Keyword arguments for parameters such as facecolor, alpha, etc. for plotting coastline geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with coastline features plotted onto the chosen map projection.
Expand source code
def plot_feature(self, ax, feature, **kwargs):
    """Plot pygplates.FeatureCollection  or pygplates.Feature onto a map.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    **kwargs :
        Keyword arguments for parameters such as `facecolor`, `alpha`,
        etc. for plotting coastline geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with coastline features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_feature(
        feature,
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, **kwargs)
def plot_fracture_zones(self, ax, color='black', **kwargs)

Plot fracture zones on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with fracture zones plotted onto the chosen map projection.
Expand source code
def plot_fracture_zones(self, ax, color="black", **kwargs):
    """Plot fracture zones on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with fracture zones plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_fracture_zones(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_grid(self, ax, grid, extent=[-180, 180, -90, 90], **kwargs)

Plot a MaskedArray raster or grid onto a standard map Projection.

Notes

Uses Matplotlib's imshow function.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
grid : MaskedArray or Raster
A MaskedArray with elements that define a grid. The number of rows in the raster corresponds to the number of latitudinal coordinates, while the number of raster columns corresponds to the number of longitudinal coordinates.
extent : 1d array, default=[-180,180,-90,90]
A four-element array to specify the [min lon, max lon, min lat, max lat] with which to constrain the grid image. If no extents are supplied, full global extent is assumed.

**kwargs : Keyword arguments for map presentation parameters such as alpha, etc. for plotting the grid. See Matplotlib's imshow keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with the grid plotted onto the chosen map projection.
Expand source code
def plot_grid(self, ax, grid, extent=[-180, 180, -90, 90], **kwargs):
    """Plot a `MaskedArray` raster or grid onto a standard map Projection.

    Notes
    -----
    Uses Matplotlib's `imshow`
    [function](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    grid : MaskedArray or `gplately.grids.Raster`
        A `MaskedArray` with elements that define a grid. The number of rows in the raster
        corresponds to the number of latitudinal coordinates, while the number of raster
        columns corresponds to the number of longitudinal coordinates.

    extent : 1d array, default=[-180,180,-90,90]
        A four-element array to specify the [min lon, max lon, min lat, max lat] with
        which to constrain the grid image. If no extents are supplied, full global
        extent is assumed.

    **kwargs :
        Keyword arguments for map presentation parameters such as
        `alpha`, etc. for plotting the grid.
        See `Matplotlib`'s `imshow` keyword arguments
        [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with the grid plotted onto the chosen map projection.
    """
    # Override matplotlib default origin ('upper')
    origin = kwargs.pop("origin", "lower")

    from .grids import Raster

    if isinstance(grid, Raster):
        # extract extent and origin
        extent = grid.extent
        origin = grid.origin
        data = grid.data
    else:
        data = grid

    return ax.imshow(
        data,
        extent=extent,
        transform=self.base_projection,
        origin=origin,
        **kwargs,
    )
def plot_grid_from_netCDF(self, ax, filename, **kwargs)

Read a raster from a netCDF file, convert it to a MaskedArray and plot it onto a standard map Projection.

Notes

plot_grid_from_netCDF uses Matplotlib's imshow function.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
filename : str
Full path to a netCDF filename.

**kwargs : Keyword arguments for map presentation parameters for plotting the grid. See Matplotlib's imshow keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with the netCDF grid plotted onto the chosen map projection.
Expand source code
def plot_grid_from_netCDF(self, ax, filename, **kwargs):
    """Read a raster from a netCDF file, convert it to a `MaskedArray` and plot it
    onto a standard map Projection.

    Notes
    -----
    `plot_grid_from_netCDF` uses Matplotlib's `imshow`
    [function](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    filename : str
        Full path to a netCDF filename.

    **kwargs :
        Keyword arguments for map presentation parameters for
        plotting the grid. See `Matplotlib`'s `imshow` keyword arguments
        [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with the netCDF grid plotted onto the chosen map projection.
    """
    # Override matplotlib default origin ('upper')
    origin = kwargs.pop("origin", "lower")

    from .grids import read_netcdf_grid

    raster, lon_coords, lat_coords = read_netcdf_grid(filename, return_grids=True)
    extent = [lon_coords[0], lon_coords[-1], lat_coords[0], lat_coords[-1]]

    if lon_coords[0] < lat_coords[-1]:
        origin = "lower"
    else:
        origin = "upper"

    return self.plot_grid(ax, raster, extent=extent, origin=origin, **kwargs)
def plot_inferred_paleo_boundaries(self, ax, color='black', **kwargs)

Plot inferred paleo boundaries on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with inferred paleo boundaries plotted onto the chosen map projection.
Expand source code
def plot_inferred_paleo_boundaries(self, ax, color="black", **kwargs):
    """Plot inferred paleo boundaries on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with inferred paleo boundaries plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_inferred_paleo_boundaries(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_misc_boundaries(self, ax, color='black', **kwargs)

Plot reconstructed miscellaneous plate boundary polylines onto a standard map Projection.

Notes

The miscellaneous boundary sections for plotting are accessed from the PlotTopologies object's other attribute. These other boundaries are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed other boundaries are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Miscellaneous boundary geometries are wrapped to the dateline using pyGPlates' DateLineWrapper by splitting a polyline into multiple polylines at the dateline. This is to avoid horizontal lines being formed between polylines at longitudes of -180 and 180 degrees. Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure compatibility with Cartopy.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the boundary lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as ‘alpha’, etc. for plotting miscellaneous boundary geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with miscellaneous boundary features plotted onto the chosen map projection.
Expand source code
def plot_misc_boundaries(self, ax, color="black", **kwargs):
    """Plot reconstructed miscellaneous plate boundary polylines onto a standard
    map Projection.

    Notes
    -----
    The miscellaneous boundary sections for plotting are accessed from the
    `PlotTopologies` object's `other` attribute. These `other` boundaries
    are reconstructed to the `time` passed to the `PlotTopologies` object and converted
    into Shapely polylines. The reconstructed `other` boundaries are plotted onto the
    GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
    (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

    Miscellaneous boundary geometries are wrapped to the dateline using
    pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
    by splitting a polyline into multiple polylines at the dateline. This is to avoid
    horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
    Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
    compatibility with Cartopy.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the boundary lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as ‘alpha’, etc. for
        plotting miscellaneous boundary geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with miscellaneous boundary features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_misc_boundaries(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_misc_transforms(self, ax, color='black', **kwargs)

Plot miscellaneous transform boundaries on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with miscellaneous transform boundaries plotted onto the chosen map projection.
Expand source code
def plot_misc_transforms(self, ax, color="black", **kwargs):
    """Plot miscellaneous transform boundaries on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with miscellaneous transform boundaries plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_misc_transforms(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_orogenic_belts(self, ax, color='black', **kwargs)

Plot orogenic belts on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with orogenic belts plotted onto the chosen map projection.
Expand source code
def plot_orogenic_belts(self, ax, color="black", **kwargs):
    """Plot orogenic belts on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with orogenic belts plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_orogenic_belts(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_passive_continental_boundaries(self, ax, color='black', **kwargs)

Plot passive continental boundaries on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with passive continental boundaries plotted onto the chosen map projection.
Expand source code
def plot_passive_continental_boundaries(self, ax, color="black", **kwargs):
    """Plot passive continental boundaries on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with passive continental boundaries plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_passive_continental_boundaries(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_plate_id(self, ax, plate_id, **kwargs)

Plot a plate polygon with an associated plate_id onto a standard map Projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
plate_id : int
A plate ID that identifies the continental polygon to plot. See the Global EarthByte plate IDs list for a full list of plate IDs to plot.

**kwargs : Keyword arguments for map presentation parameters such as alpha, etc. for plotting the grid. See Matplotlib's imshow keyword arguments here.

Expand source code
def plot_plate_id(self, ax, plate_id, **kwargs):
    """Plot a plate polygon with an associated `plate_id` onto a standard map Projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    plate_id : int
        A plate ID that identifies the continental polygon to plot. See the
        [Global EarthByte plate IDs list](https://www.earthbyte.org/webdav/ftp/earthbyte/GPlates/SampleData/FeatureCollections/Rotations/Global_EarthByte_PlateIDs_20071218.pdf)
        for a full list of plate IDs to plot.

    **kwargs :
        Keyword arguments for map presentation parameters such as
        `alpha`, etc. for plotting the grid.
        See `Matplotlib`'s `imshow` keyword arguments
        [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.imshow.html).

    """
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    for feature in self.topologies:
        if feature.get_reconstruction_plate_id() == plate_id:
            ft_plate = shapelify_feature_polygons(
                [feature],
                central_meridian=central_meridian,
                tessellate_degrees=tessellate_degrees,
            )
            return ax.add_geometries(ft_plate, crs=self.base_projection, **kwargs)
def plot_plate_motion_vectors(self, ax, spacingX=10, spacingY=10, normalise=False, **kwargs)

Calculate plate motion velocity vector fields at a particular geological time and plot them onto a standard map Projection.

Notes

plot_plate_motion_vectors generates a MeshNode domain of point features using given spacings in the X and Y directions (spacingX and spacingY). Each point in the domain is assigned a plate ID, and these IDs are used to obtain equivalent stage rotations of identified tectonic plates over a 5 Ma time interval. Each point and its stage rotation are used to calculate plate velocities at a particular geological time. Velocities for each domain point are represented in the north-east-down coordinate system and plotted on a GeoAxes.

Vector fields can be optionally normalised by setting normalise to True. This makes vector arrow lengths uniform.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
spacingX : int, default=10
The spacing in the X direction used to make the velocity domain point feature mesh.
spacingY : int, default=10
The spacing in the Y direction used to make the velocity domain point feature mesh.
normalise : bool, default=False
Choose whether to normalise the velocity magnitudes so that vector lengths are all equal.

**kwargs : Keyword arguments for quiver presentation parameters for plotting the velocity vector field. See Matplotlib quiver keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with the velocity vector field plotted onto the chosen map projection.
Expand source code
def plot_plate_motion_vectors(
    self, ax, spacingX=10, spacingY=10, normalise=False, **kwargs
):
    """Calculate plate motion velocity vector fields at a particular geological time
    and plot them onto a standard map Projection.

    Notes
    -----
    `plot_plate_motion_vectors` generates a MeshNode domain of point features using
    given spacings in the X and Y directions (`spacingX` and `spacingY`). Each point in
    the domain is assigned a plate ID, and these IDs are used to obtain equivalent stage
    rotations of identified tectonic plates over a 5 Ma time interval. Each point and
    its stage rotation are used to calculate plate velocities at a particular geological
    time. Velocities for each domain point are represented in the north-east-down
    coordinate system and plotted on a GeoAxes.

    Vector fields can be optionally normalised by setting `normalise` to `True`. This
    makes vector arrow lengths uniform.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    spacingX : int, default=10
        The spacing in the X direction used to make the velocity domain point feature mesh.

    spacingY : int, default=10
        The spacing in the Y direction used to make the velocity domain point feature mesh.

    normalise : bool, default=False
        Choose whether to normalise the velocity magnitudes so that vector lengths are
        all equal.

    **kwargs :
        Keyword arguments for quiver presentation parameters for plotting
        the velocity vector field. See `Matplotlib` quiver keyword arguments
        [here](https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.axes.Axes.quiver.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with the velocity vector field plotted onto the chosen map projection.
    """

    lons = np.arange(-180, 180 + spacingX, spacingX)
    lats = np.arange(-90, 90 + spacingY, spacingY)
    lonq, latq = np.meshgrid(lons, lats)

    # create a feature from all the points
    velocity_domain_features = ptt.velocity_tools.make_GPML_velocity_feature(
        lonq.ravel(), latq.ravel()
    )

    rotation_model = self.plate_reconstruction.rotation_model
    topology_features = self.plate_reconstruction.topology_features

    delta_time = 5.0
    all_velocities = ptt.velocity_tools.get_plate_velocities(
        velocity_domain_features,
        topology_features,
        rotation_model,
        self.time,
        delta_time,
        "vector_comp",
    )

    X, Y, U, V = ptt.velocity_tools.get_x_y_u_v(lons, lats, all_velocities)

    if normalise:
        mag = np.hypot(U, V)
        mag[mag == 0] = 1
        U /= mag
        V /= mag

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", UserWarning)
        quiver = ax.quiver(X, Y, U, V, transform=self.base_projection, **kwargs)
    return quiver
def plot_ridges(self, ax, color='black', **kwargs)

Plot reconstructed ridge polylines onto a standard map Projection.

Notes

The ridges for plotting are accessed from the PlotTopologies object's ridges attribute. These ridges are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed ridges are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Ridge geometries are wrapped to the dateline using pyGPlates' DateLineWrapper by splitting a polyline into multiple polylines at the dateline. This is to avoid horizontal lines being formed between polylines at longitudes of -180 and 180 degrees. Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure compatibility with Cartopy.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the ridge lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting ridge geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with ridge features plotted onto the chosen map projection.
Expand source code
def plot_ridges(self, ax, color="black", **kwargs):
    """Plot reconstructed ridge polylines onto a standard map Projection.

    Notes
    -----
    The `ridges` for plotting are accessed from the `PlotTopologies` object's
    `ridges` attribute. These `ridges` are reconstructed to the `time`
    passed to the `PlotTopologies` object and converted into Shapely polylines.
    The reconstructed `ridges` are plotted onto the GeoAxes or GeoAxesSubplot map
    `ax` using GeoPandas. Map presentation details (e.g. `facecolor`, `edgecolor`, `alpha`…)
    are permitted as keyword arguments.

    Ridge geometries are wrapped to the dateline using
    pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
    by splitting a polyline into multiple polylines at the dateline. This is to avoid
    horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
    Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
    compatibility with Cartopy.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the ridge lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc. for
        plotting ridge geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with ridge features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_ridges(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_ridges_and_transforms(self, ax, color='black', **kwargs)

Plot reconstructed ridge & transform boundary polylines onto a standard map Projection.

Notes

The ridge & transform sections for plotting are accessed from the PlotTopologies object's ridge_transforms attribute. These ridge_transforms are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed ridge_transforms are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Note: Ridge & transform geometries are wrapped to the dateline using pyGPlates' DateLineWrapper by splitting a polyline into multiple polylines at the dateline. This is to avoid horizontal lines being formed between polylines at longitudes of -180 and 180 degrees. Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure compatibility with Cartopy.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the ridge & transform lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as ‘alpha’, etc. for plotting ridge & transform geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with ridge & transform features plotted onto the chosen map projection.
Expand source code
def plot_ridges_and_transforms(self, ax, color="black", **kwargs):
    """Plot reconstructed ridge & transform boundary polylines onto a standard map
    Projection.

    Notes
    -----
    The ridge & transform sections for plotting are accessed from the
    `PlotTopologies` object's `ridge_transforms` attribute. These `ridge_transforms`
    are reconstructed to the `time` passed to the `PlotTopologies` object and converted
    into Shapely polylines. The reconstructed `ridge_transforms` are plotted onto the
    GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
    (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

    Note: Ridge & transform geometries are wrapped to the dateline using
    pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
    by splitting a polyline into multiple polylines at the dateline. This is to avoid
    horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
    Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
    compatibility with Cartopy.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the ridge & transform lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as ‘alpha’, etc. for
        plotting ridge & transform geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with ridge & transform features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_ridges_and_transforms(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_slab_edges(self, ax, color='black', **kwargs)

Plot slab edges on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with slab edges plotted onto the chosen map projection.
Expand source code
def plot_slab_edges(self, ax, color="black", **kwargs):
    """Plot slab edges on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with slab edges plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_slab_edges(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_subduction_teeth(self, ax, spacing=0.07, size=None, aspect=None, color='black', **kwargs)

Plot subduction teeth onto a standard map Projection.

Notes

Subduction teeth are tessellated from PlotTopologies object attributes trench_left and trench_right, and transformed into Shapely polygons for plotting.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
spacing : float, default=0.07
The tessellation threshold (in radians). Parametrises subduction tooth density. Triangles are generated only along line segments with distances that exceed the given threshold spacing.
size : float, default=None
Length of teeth triangle base (in radians). If kept at None, then size = 0.5*spacing.
aspect : float, default=None
Aspect ratio of teeth triangles. If kept at None, then aspect = 2/3*size.
color : str, default='black'
The colour of the teeth. By default, it is set to black.

**kwargs : Keyword arguments parameters such as alpha, etc. for plotting subduction tooth polygons. See Matplotlib keyword arguments here.

Expand source code
def plot_subduction_teeth(
    self, ax, spacing=0.07, size=None, aspect=None, color="black", **kwargs
):
    """Plot subduction teeth onto a standard map Projection.

    Notes
    -----
    Subduction teeth are tessellated from `PlotTopologies` object attributes `trench_left` and
    `trench_right`, and transformed into Shapely polygons for plotting.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    spacing : float, default=0.07
        The tessellation threshold (in radians). Parametrises subduction tooth density.
        Triangles are generated only along line segments with distances that exceed
        the given threshold `spacing`.

    size : float, default=None
        Length of teeth triangle base (in radians). If kept at `None`, then
        `size = 0.5*spacing`.

    aspect : float, default=None
        Aspect ratio of teeth triangles. If kept at `None`, then `aspect = 2/3*size`.

    color : str, default='black'
        The colour of the teeth. By default, it is set to black.

    **kwargs :
        Keyword arguments parameters such as `alpha`, etc.
        for plotting subduction tooth polygons.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).
    """
    if self._time is None:
        raise ValueError(
            "No topologies have been resolved. Set `PlotTopologies.time` to construct them."
        )
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")

    central_meridian = _meridian_from_ax(ax)
    tessellate_degrees = np.rad2deg(spacing)

    try:
        projection = ax.projection
    except AttributeError:
        print(
            "The ax.projection does not exist. You must set projection to plot Cartopy maps, such as ax = plt.subplot(211, projection=cartopy.crs.PlateCarree())"
        )
        projection = None

    if isinstance(projection, ccrs.PlateCarree):
        spacing = math.degrees(spacing)
    else:
        spacing = spacing * EARTH_RADIUS * 1e3

    if aspect is None:
        aspect = 2.0 / 3.0
    if size is None:
        size = spacing * 0.5

    height = size * aspect

    trench_left_features = shapelify_feature_lines(
        self.trench_left,
        tessellate_degrees=tessellate_degrees,
        central_meridian=central_meridian,
    )
    trench_right_features = shapelify_feature_lines(
        self.trench_right,
        tessellate_degrees=tessellate_degrees,
        central_meridian=central_meridian,
    )

    plot_subduction_teeth(
        trench_left_features,
        size,
        "l",
        height,
        spacing,
        projection=projection,
        ax=ax,
        color=color,
        **kwargs,
    )
    plot_subduction_teeth(
        trench_right_features,
        size,
        "r",
        height,
        spacing,
        projection=projection,
        ax=ax,
        color=color,
        **kwargs,
    )
def plot_subduction_teeth_deprecated(self, ax, spacing=0.1, size=2.0, aspect=1, color='black', **kwargs)

Plot subduction teeth onto a standard map Projection.

Notes

Subduction teeth are tessellated from PlotTopologies object attributes trench_left and trench_right, and transformed into Shapely polygons for plotting.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
spacing : float, default=0.1
The tessellation threshold (in radians). Parametrises subduction tooth density. Triangles are generated only along line segments with distances that exceed the given threshold ‘spacing’.
size : float, default=2.0
Length of teeth triangle base.
aspect : float, default=1
Aspect ratio of teeth triangles. Ratio is 1.0 by default.
color : str, default=’black’
The colour of the teeth. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as ‘alpha’, etc. for plotting subduction tooth polygons. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with subduction teeth plotted onto the chosen map projection.
Expand source code
def plot_subduction_teeth_deprecated(
    self, ax, spacing=0.1, size=2.0, aspect=1, color="black", **kwargs
):
    """Plot subduction teeth onto a standard map Projection.

    Notes
    -----
    Subduction teeth are tessellated from `PlotTopologies` object attributes `trench_left` and
    `trench_right`, and transformed into Shapely polygons for plotting.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    spacing : float, default=0.1
        The tessellation threshold (in radians). Parametrises subduction tooth density.
        Triangles are generated only along line segments with distances that exceed
        the given threshold ‘spacing’.

    size : float, default=2.0
        Length of teeth triangle base.

    aspect : float, default=1
        Aspect ratio of teeth triangles. Ratio is 1.0 by default.

    color : str, default=’black’
        The colour of the teeth. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as ‘alpha’, etc. for
        plotting subduction tooth polygons.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with subduction teeth plotted onto the chosen map projection.
    """
    import shapely

    # add Subduction Teeth
    subd_xL, subd_yL = self._tessellate_triangles(
        self.trench_left,
        tesselation_radians=spacing,
        triangle_base_length=size,
        triangle_aspect=-aspect,
    )
    subd_xR, subd_yR = self._tessellate_triangles(
        self.trench_right,
        tesselation_radians=spacing,
        triangle_base_length=size,
        triangle_aspect=aspect,
    )

    teeth = []
    for tX, tY in zip(subd_xL, subd_yL):
        triangle_xy_points = np.c_[tX, tY]
        shp = shapely.geometry.Polygon(triangle_xy_points)
        teeth.append(shp)

    for tX, tY in zip(subd_xR, subd_yR):
        triangle_xy_points = np.c_[tX, tY]
        shp = shapely.geometry.Polygon(triangle_xy_points)
        teeth.append(shp)

    return ax.add_geometries(teeth, crs=self.base_projection, color=color, **kwargs)
def plot_sutures(self, ax, color='black', **kwargs)

Plot sutures on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with sutures plotted onto the chosen map projection.
Expand source code
def plot_sutures(self, ax, color="black", **kwargs):
    """Plot sutures on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with sutures plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_sutures(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_terrane_boundaries(self, ax, color='black', **kwargs)

Plot terrane boundaries on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with terrane boundaries plotted onto the chosen map projection.
Expand source code
def plot_terrane_boundaries(self, ax, color="black", **kwargs):
    """Plot terrane boundaries on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with terrane boundaries plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_terrane_boundaries(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_transforms(self, ax, color='black', **kwargs)

Plot reconstructed transform boundary polylines onto a standard map.

Notes

The transform sections for plotting are accessed from the PlotTopologies object's transforms attribute. These transforms are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed transforms are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Transform geometries are wrapped to the dateline using pyGPlates' DateLineWrapper by splitting a polyline into multiple polylines at the dateline. This is to avoid horizontal lines being formed between polylines at longitudes of -180 and 180 degrees. Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure compatibility with Cartopy.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the transform lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting transform geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with transform features plotted onto the chosen map projection.
Expand source code
def plot_transforms(self, ax, color="black", **kwargs):
    """Plot reconstructed transform boundary polylines onto a standard map.

    Notes
    -----
    The transform sections for plotting are accessed from the
    `PlotTopologies` object's `transforms` attribute. These `transforms`
    are reconstructed to the `time` passed to the `PlotTopologies` object and converted
    into Shapely polylines. The reconstructed `transforms` are plotted onto the
    GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
    (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

    Transform geometries are wrapped to the dateline using
    pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
    by splitting a polyline into multiple polylines at the dateline. This is to avoid
    horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
    Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
    compatibility with Cartopy.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the transform lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting transform geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with transform features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_transforms(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_transitional_crusts(self, ax, color='black', **kwargs)

Plot transitional crust on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with transitional crust plotted onto the chosen map projection.
Expand source code
def plot_transitional_crusts(self, ax, color="black", **kwargs):
    """Plot transitional crust on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with transitional crust plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_transitional_crusts(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_trenches(self, ax, color='black', **kwargs)

Plot reconstructed subduction trench polylines onto a standard map Projection.

Notes

The trench sections for plotting are accessed from the PlotTopologies object's trenches attribute. These trenches are reconstructed to the time passed to the PlotTopologies object and converted into Shapely polylines. The reconstructed trenches are plotted onto the GeoAxes or GeoAxesSubplot map ax using GeoPandas. Map presentation details (e.g. facecolor, edgecolor, alpha…) are permitted as keyword arguments.

Trench geometries are wrapped to the dateline using pyGPlates' DateLineWrapper by splitting a polyline into multiple polylines at the dateline. This is to avoid horizontal lines being formed between polylines at longitudes of -180 and 180 degrees. Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure compatibility with Cartopy.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with transform features plotted onto the chosen map projection.
Expand source code
def plot_trenches(self, ax, color="black", **kwargs):
    """Plot reconstructed subduction trench polylines onto a standard map
    Projection.

    Notes
    -----
    The trench sections for plotting are accessed from the
    `PlotTopologies` object's `trenches` attribute. These `trenches`
    are reconstructed to the `time` passed to the `PlotTopologies` object and converted
    into Shapely polylines. The reconstructed `trenches` are plotted onto the
    GeoAxes or GeoAxesSubplot map `ax` using GeoPandas. Map presentation details
    (e.g. `facecolor`, `edgecolor`, `alpha`…) are permitted as keyword arguments.

    Trench geometries are wrapped to the dateline using
    pyGPlates' [DateLineWrapper](https://www.gplates.org/docs/pygplates/generated/pygplates.datelinewrapper)
    by splitting a polyline into multiple polylines at the dateline. This is to avoid
    horizontal lines being formed between polylines at longitudes of -180 and 180 degrees.
    Point features near the poles (-89 & 89 degree latitude) are also clipped to ensure
    compatibility with Cartopy.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with transform features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", 1)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_trenches(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def plot_unclassified_features(self, ax, color='black', **kwargs)

Plot GPML unclassified features on a standard map projection.

Parameters

ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
A subclass of matplotlib.axes.Axes which represents a map Projection. The map should be set at a particular Cartopy projection.
color : str, default=’black’
The colour of the trench lines. By default, it is set to black.

**kwargs : Keyword arguments for parameters such as alpha, etc. for plotting trench geometries. See Matplotlib keyword arguments here.

Returns

ax : instance of <geopandas.GeoDataFrame.plot>
A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map with unclassified features plotted onto the chosen map projection.
Expand source code
def plot_unclassified_features(self, ax, color="black", **kwargs):
    """Plot GPML unclassified features on a standard map projection.

    Parameters
    ----------
    ax : instance of <cartopy.mpl.geoaxes.GeoAxes> or <cartopy.mpl.geoaxes.GeoAxesSubplot>
        A subclass of `matplotlib.axes.Axes` which represents a map Projection.
        The map should be set at a particular Cartopy projection.

    color : str, default=’black’
        The colour of the trench lines. By default, it is set to black.

    **kwargs :
        Keyword arguments for parameters such as `alpha`, etc.
        for plotting trench geometries.
        See `Matplotlib` keyword arguments
        [here](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html).

    Returns
    -------
    ax : instance of <geopandas.GeoDataFrame.plot>
        A standard cartopy.mpl.geoaxes.GeoAxes or cartopy.mpl.geoaxes.GeoAxesSubplot map
        with unclassified features plotted onto the chosen map projection.
    """
    if "transform" in kwargs.keys():
        warnings.warn(
            "'transform' keyword argument is ignored by PlotTopologies",
            UserWarning,
        )
        kwargs.pop("transform")
    tessellate_degrees = kwargs.pop("tessellate_degrees", None)
    central_meridian = kwargs.pop("central_meridian", None)
    if central_meridian is None:
        central_meridian = _meridian_from_ax(ax)

    gdf = self.get_unclassified_features(
        central_meridian=central_meridian,
        tessellate_degrees=tessellate_degrees,
    )
    if hasattr(ax, "projection"):
        gdf = _clean_polygons(data=gdf, projection=ax.projection)
    else:
        kwargs["transform"] = self.base_projection
    return gdf.plot(ax=ax, facecolor="none", edgecolor=color, **kwargs)
def update_time(self, time)

Re-reconstruct features and topologies to the time specified by the PlotTopologies time attribute whenever it or the anchor plate is updated.

Notes

The following PlotTopologies attributes are updated whenever a reconstruction time attribute is set:

  • resolved topology features (topological plates and networks)
  • ridge and transform boundary sections (resolved features)
  • ridge boundary sections (resolved features)
  • transform boundary sections (resolved features)
  • subduction boundary sections (resolved features)
  • left subduction boundary sections (resolved features)
  • right subduction boundary sections (resolved features)
  • other boundary sections (resolved features) that are not subduction zones or mid-ocean ridges (ridge/transform)

Moreover, coastlines, continents and COBs are reconstructed to the new specified time.

Expand source code
def update_time(self, time):
    """Re-reconstruct features and topologies to the time specified by the `PlotTopologies` `time` attribute
    whenever it or the anchor plate is updated.

    Notes
    -----
    The following `PlotTopologies` attributes are updated whenever a reconstruction `time` attribute is set:

    - resolved topology features (topological plates and networks)
    - ridge and transform boundary sections (resolved features)
    - ridge boundary sections (resolved features)
    - transform boundary sections (resolved features)
    - subduction boundary sections (resolved features)
    - left subduction boundary sections (resolved features)
    - right subduction boundary sections (resolved features)
    - other boundary sections (resolved features) that are not subduction zones or mid-ocean ridges
    (ridge/transform)

    Moreover, coastlines, continents and COBs are reconstructed to the new specified `time`.
    """
    self._time = float(time)
    resolved_topologies = ptt.resolve_topologies.resolve_topologies_into_features(
        self.plate_reconstruction.rotation_model,
        self.plate_reconstruction.topology_features,
        self.time,
        anchor_plate_id=self.anchor_plate_id,
    )

    (
        self.topologies,
        self.ridge_transforms,
        self.ridges,
        self.transforms,
        self.trenches,
        self.trench_left,
        self.trench_right,
        self.other,
    ) = resolved_topologies

    self.ridges, self.transforms = ptt.separate_ridge_transform_segments.separate_features_into_ridges_and_transforms(
        self.plate_reconstruction.rotation_model,
        self.ridge_transforms
    )

    # miscellaneous boundaries
    self.continental_rifts = []
    self.faults = []
    self.fracture_zones = []
    self.inferred_paleo_boundaries = []
    self.terrane_boundaries = []
    self.transitional_crusts = []
    self.orogenic_belts = []
    self.sutures = []
    self.continental_crusts = []
    self.extended_continental_crusts = []
    self.passive_continental_boundaries = []
    self.slab_edges = []
    self.misc_transforms = []
    self.unclassified_features = []

    for topol in self.other:
        if topol.get_feature_type() == pygplates.FeatureType.gpml_continental_rift:
            self.continental_rifts.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_fault:
            self.faults.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_fracture_zone:
            self.fracture_zones.append(topol)

        elif (
            topol.get_feature_type()
            == pygplates.FeatureType.gpml_inferred_paleo_boundary
        ):
            self.inferred_paleo_boundaries.append(topol)

        elif (
            topol.get_feature_type() == pygplates.FeatureType.gpml_terrane_boundary
        ):
            self.terrane_boundaries.append(topol)

        elif (
            topol.get_feature_type()
            == pygplates.FeatureType.gpml_transitional_crust
        ):
            self.transitional_crusts.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_orogenic_belt:
            self.orogenic_belts.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_suture:
            self.sutures.append(topol)

        elif (
            topol.get_feature_type() == pygplates.FeatureType.gpml_continental_crust
        ):
            self.continental_crusts.append(topol)

        elif (
            topol.get_feature_type()
            == pygplates.FeatureType.gpml_extended_continental_crust
        ):
            self.extended_continental_crusts.append(topol)

        elif (
            topol.get_feature_type()
            == pygplates.FeatureType.gpml_passive_continental_boundary
        ):
            self.passive_continental_boundaries.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_slab_edge:
            self.slab_edges.append(topol)

        elif topol.get_feature_type() == pygplates.FeatureType.gpml_transform:
            self.misc_transforms.append(topol)

        elif (
            topol.get_feature_type()
            == pygplates.FeatureType.gpml_unclassified_feature
        ):
            self.unclassified_features.append(topol)

    # reconstruct other important polygons and lines
    if self._coastlines:
        self.coastlines = self.plate_reconstruction.reconstruct(
            self._coastlines,
            self.time,
            from_time=0,
            anchor_plate_id=self.anchor_plate_id,
        )

    if self._continents:
        self.continents = self.plate_reconstruction.reconstruct(
            self._continents,
            self.time,
            from_time=0,
            anchor_plate_id=self.anchor_plate_id,
        )

    if self._COBs:
        self.COBs = self.plate_reconstruction.reconstruct(
            self._COBs, self.time, from_time=0, anchor_plate_id=self.anchor_plate_id
        )
class Points (plate_reconstruction, lons, lats, time=0, plate_id=None)

Points contains methods to reconstruct and work with with geological point data. For example, the locations and plate velocities of point data can be calculated at a specific geological time. The Points object requires the PlateReconstruction object to work because it holds the rotation_model and static_polygons needed to classify topological plates and quantify feature rotations through time.

Attributes

plate_reconstruction : object pointer
Allows for the accessibility of PlateReconstruction object attributes: rotation_model, topology_featues and static_polygons for use in the Points object if called using “self.plate_reconstruction.X”, where X is the attribute.
lons : float, or 1D array
A single float, or a 1D array containing the longitudes of point data.
lats : float 1D array
A single float, or a 1D array containing the latitudes of point data.
time : float, default=0
The specific geological time (Ma) at which to reconstruct the point data. By default, it is set to the present day (0 Ma).
plate_id : int, default=None
The plate ID of a particular tectonic plate on which point data lies, if known. This is obtained in init if not provided.
Expand source code
class Points(object):
    """`Points` contains methods to reconstruct and work with with geological point data. For example, the
    locations and plate velocities of point data can be calculated at a specific geological `time`. The `Points`
    object requires the `PlateReconstruction` object to work because it holds the `rotation_model` and `static_polygons`
    needed to classify topological plates and quantify feature rotations through time.

    Attributes
    ----------
    plate_reconstruction : object pointer
        Allows for the accessibility of `PlateReconstruction` object attributes: `rotation_model`, `topology_featues`
        and `static_polygons` for use in the `Points` object if called using “self.plate_reconstruction.X”,
        where X is the attribute.

    lons : float, or 1D array
        A single float, or a 1D array containing the longitudes of point data.

    lats : float 1D array
        A single float, or a 1D array containing the latitudes of point data.

    time : float, default=0
        The specific geological time (Ma) at which to reconstruct the point data. By default, it is set to
        the present day (0 Ma).

    plate_id : int, default=None
        The plate ID of a particular tectonic plate on which point data lies, if known. This is obtained in `init`
        if not provided.

    """

    def __init__(self, plate_reconstruction, lons, lats, time=0, plate_id=None):
        self.lons = lons
        self.lats = lats
        self.time = time
        self.attributes = dict()

        self.plate_reconstruction = plate_reconstruction

        self._update(lons, lats, time, plate_id)

    def _update(self, lons, lats, time=0, plate_id=None):
        # get Cartesian coordinates
        self.x, self.y, self.z = _tools.lonlat2xyz(lons, lats, degrees=False)

        # scale by average radius of the Earth
        self.x *= _tools.EARTH_RADIUS
        self.y *= _tools.EARTH_RADIUS
        self.z *= _tools.EARTH_RADIUS

        # store concatenated arrays
        self.lonlat = np.c_[self.lons, self.lats]
        self.xyz = np.c_[self.x, self.y, self.z]

        rotation_model = self.plate_reconstruction.rotation_model
        static_polygons = self.plate_reconstruction.static_polygons

        features = _tools.points_to_features(lons, lats, plate_id)

        if plate_id is not None:
            plate_id = np.atleast_1d(plate_id)
            self.features = features
        else:
            # partition using static polygons
            # being careful to observe 'from time'
            partitioned_features = pygplates.partition_into_plates(
                static_polygons, rotation_model, features, reconstruction_time=time
            )
            self.features = partitioned_features

            plate_id = np.empty(len(self.lons), dtype=int)
            for i, feature in enumerate(partitioned_features):
                plate_id[i] = feature.get_reconstruction_plate_id()

        self.plate_id = plate_id
        self.FeatureCollection = pygplates.FeatureCollection(self.features)

    @property
    def size(self):
        """Number of points"""
        return len(self.lons)

    def __getstate__(self):
        filenames = self.plate_reconstruction.__getstate__()

        # add important variables from Points object
        filenames["lons"] = self.lons
        filenames["lats"] = self.lats
        filenames["time"] = self.time
        filenames["plate_id"] = self.plate_id
        for key in self.attributes:
            filenames[key] = self.attributes[key]

        return filenames

    def __setstate__(self, state):
        self.plate_reconstruction = PlateReconstruction(
            state["rotation_model"],
            state["topology_features"],
            state["static_polygons"],
        )

        # reinstate unpicklable items
        self.lons = state["lons"]
        self.lats = state["lats"]
        self.time = state["time"]
        self.plate_id = state["plate_id"]
        self.attributes = dict()

        self._update(self.lons, self.lats, self.time, self.plate_id)

        for key in state:
            if key not in ["lons", "lats", "time", "plate_id"]:
                self.attributes[key] = state[key]

    def copy(self):
        """Returns a copy of the Points object

        Returns
        -------
        Points
            A copy of the current Points object
        """
        gpts = Points(
            self.plate_reconstruction,
            self.lons.copy(),
            self.lats.copy(),
            self.time,
            self.plate_id.copy(),
        )
        gpts.add_attributes(**self.attributes.copy())

    def add_attributes(self, **kwargs):
        """Adds the value of a feature attribute associated with a key.

        Example
        -------

            # Define latitudes and longitudes to set up a Points object
            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add the attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            print(gpts.attributes)

        The output would be:

            {'a': [10, 2, 2], 'b': [2, 3, 3], 'c': [30, 0, 0]}

        Parameters
        ----------
        **kwargs : sequence of key=item/s
            A single key=value pair, or a sequence of key=value pairs denoting the name and
            value of an attribute.


        Notes
        -----
        * An **assertion** is raised if the number of points in the Points object is not equal
        to the number of values associated with an attribute key. For example, consider an instance
        of the Points object with 3 points. If the points are ascribed an attribute `temperature`,
        there must be one `temperature` value per point, i.e. `temperature = [20, 15, 17.5]`.

        """
        keys = kwargs.keys()

        for key in kwargs:
            attribute = kwargs[key]

            # make sure attribute is the same size as self.lons
            if type(attribute) is int or type(attribute) is float:
                array = np.full(self.lons.size, attribute)
                attribute = array
            elif isinstance(attribute, np.ndarray):
                if attribute.size == 1:
                    array = np.full(self.lons.size, attribute, dtype=attribute.dtype)
                    attribute = array

            assert (
                len(attribute) == self.lons.size
            ), "Size mismatch, ensure attributes have the same number of entries as Points"
            self.attributes[key] = attribute

        if any(kwargs):
            # add these to the FeatureCollection
            for f, feature in enumerate(self.FeatureCollection):
                for key in keys:
                    # extract value for each row in attribute
                    val = self.attributes[key][f]

                    # set this attribute on the feature
                    feature.set_shapefile_attribute(key, val)

    def get_geopandas_dataframe(self):
        """Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
        pandas.DataFrame that has a column with geometry
        Any existing point attributes are kept.

        Returns
        -------
        GeoDataFrame : instance of `geopandas.GeoDataFrame`
            A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
            and an additional column containing a shapely `geometry` attribute.

        Example
        -------

            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add sample attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            gpts.get_geopandas_dataframe()

        ...has the output:

                a  b   c                     geometry
            0  10  2  30  POINT (140.00000 -30.00000)
            1   2  3   0  POINT (150.00000 -40.00000)
            2   2  3   0  POINT (160.00000 -50.00000)


        """
        import geopandas as gpd
        from shapely import geometry

        # create shapely points
        points = []
        for lon, lat in zip(self.lons, self.lats):
            points.append(geometry.Point(lon, lat))

        attributes = self.attributes.copy()
        attributes["geometry"] = points

        return gpd.GeoDataFrame(attributes, geometry="geometry")

    def get_geodataframe(self):
        """Returns the output of `Points.get_geopandas_dataframe()`.

        Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
        pandas.DataFrame that has a column with geometry
        Any existing point attributes are kept.

        Returns
        -------
        GeoDataFrame : instance of `geopandas.GeoDataFrame`
            A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
            and an additional column containing a shapely `geometry` attribute.

        Example
        -------

            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add sample attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            gpts.get_geopandas_dataframe()

        ...has the output:

                a  b   c                     geometry
            0  10  2  30  POINT (140.00000 -30.00000)
            1   2  3   0  POINT (150.00000 -40.00000)
            2   2  3   0  POINT (160.00000 -50.00000)


        """
        return self.get_geopandas_dataframe()

    def reconstruct(self, time, anchor_plate_id=None, return_array=False, **kwargs):
        """Reconstructs regular geological features, motion paths or flowlines to a specific geological time and extracts
        the latitudinal and longitudinal points of these features.

        Note: this method accesses and uses the rotation model attribute from the PointReconstruction object, and reconstructs
        the feature lat-lon point attributes of the Points object.

        Parameters
        ----------
        time : float
            The specific geological time (Ma) to reconstruct features to.

        anchor_plate_id : int, default=None
            Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
            with respect to the anchor_plate_ID specified in the `gplately.PlateReconstruction` object,
            which is a default plate ID of 0 unless otherwise specified.

        return_array : bool, default False
            Return a `numpy.ndarray`, rather than a `Points` object.

        **reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
            The specific reconstruction type to generate based on input feature geometry type. Can be provided as
            ReconstructType.feature_geometry to only reconstruct regular feature geometries, or ReconstructType.MotionPath to
            only reconstruct motion path features, or ReconstructType.Flowline to only reconstruct flowline features. Generates
            :class:`reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:`reconstructed motion
            paths<ReconstructedMotionPath>’, or :class:`reconstructed flowlines<ReconstructedFlowline>’ respectively.

        **group_with_feature : bool, default=False
            Used to group reconstructed geometries with their features. This can be useful when a feature has more than one
            geometry and hence more than one reconstructed geometry. The output *reconstructed_geometries* then becomes a
            list of tuples where each tuple contains a :class:`feature<Feature>` and a ``list`` of reconstructed geometries.
            Note: this keyword argument only applies when *reconstructed_geometries* is a list because exported files are
            always grouped with their features. This is applicable to all ReconstructType features.

        **export_wrap_to_dateline : bool, default=True
            Wrap/clip reconstructed geometries to the dateline (currently ignored).

        Returns
        -------
        rlons : list of float
            A 1D numpy array enclosing all reconstructed point features' longitudes.

        rlats : list of float
            A 1D numpy array enclosing all reconstructed point features' latitudes.

        Raises
        ------
        NotImplementedError
            if the starting time for reconstruction `from_time` is not equal to 0.0
        """
        from_time = self.time
        to_time = time

        if not anchor_plate_id:
            anchor_plate_id = self.plate_reconstruction.anchor_plate_id

        reconstructed_features = self.plate_reconstruction.reconstruct(
            self.features, to_time, from_time, anchor_plate_id=anchor_plate_id, **kwargs
        )

        rlons, rlats = _tools.extract_feature_lonlat(reconstructed_features)
        if return_array:
            return rlons, rlats
        else:
            gpts = Points(
                self.plate_reconstruction,
                rlons,
                rlats,
                time=to_time,
                plate_id=self.plate_id,
            )
            gpts.add_attributes(**self.attributes.copy())
            return gpts

    def reconstruct_to_birth_age(self, ages, anchor_plate_id=None, **kwargs):
        """Reconstructs point features supplied to the `Points` object from the supplied initial time (`self.time`)
        to a range of times. The number of supplied times must equal the number of point features supplied to the Points object.

        Attributes
        ----------
        ages : array
            Geological times to reconstruct features to. Must have the same length as the `Points `object's `self.features` attribute
            (which holds all point features represented on a unit length sphere in 3D Cartesian coordinates).
        anchor_plate_id : int, default=None
            Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
            with respect to the anchor_plate_ID specified in the `gplately.PlateReconstruction` object,
            which is a default plate ID of 0 unless otherwise specified.
        **kwargs
            Additional keyword arguments for the `gplately.PlateReconstruction.reconstruct` method.

        Raises
        ------
        ValueError
            If the number of ages and number of point features supplied to the Points object are not identical.

        Returns
        -------
        rlons, rlats : float
            The longitude and latitude coordinate lists of all point features reconstructed to all specified ages.

        Examples
        --------
        To reconstruct n seed points' locations to B Ma (for this example n=2, with (lon,lat) = (78,30) and (56,22) at time=0 Ma,
        and we reconstruct to B=10 Ma):

            # Longitude and latitude of n=2 seed points
            pt_lon = np.array([78., 56])
            pt_lat = np.array([30., 22])

            # Call the Points object!
            gpts = gplately.Points(model, pt_lon, pt_lat)
            print(gpts.features[0].get_all_geometries())   # Confirms we have features represented as points on a sphere

            ages = numpy.linspace(10,10, len(pt_lon))
            rlons, rlats = gpts.reconstruct_to_birth_age(ages)

        """
        from_time = self.time
        if not anchor_plate_id:
            anchor_plate_id = self.plate_reconstruction.anchor_plate_id

        ages = np.array(ages)

        if len(ages) != len(self.features):
            raise ValueError("Number of points and ages must be identical")

        unique_ages = np.unique(ages)
        rlons = np.zeros(ages.shape)
        rlats = np.zeros(ages.shape)

        for age in unique_ages:
            mask_age = ages == age

            reconstructed_features = self.plate_reconstruction.reconstruct(
                self.features, age, from_time, anchor_plate_id=anchor_plate_id, **kwargs
            )

            lons, lats = _tools.extract_feature_lonlat(reconstructed_features)

            rlons[mask_age] = lons[mask_age]
            rlats[mask_age] = lats[mask_age]

        return rlons, rlats

    def plate_velocity(self, time, delta_time=1):
        """Calculates the x and y components of tectonic plate velocities at a particular geological time.

        This method accesses and uses the `rotation_model` attribute from the `PlateReconstruction` object and uses the `Points`
        object's `self.features` attribute. Feature points are extracted and assigned plate IDs. These IDs are used to obtain the
        equivalent stage rotations of identified tectonic plates over a time interval `delta_time`. Each feature point and its stage
        rotation are used to calculate the point's plate velocity at a particular geological time. Obtained velocities for each domain
        point are represented in the north-east-down coordinate system, and their x,y Cartesian coordinate components are extracted.

        Parameters
        ----------
        time : float
            The specific geological time (Ma) at which to calculate plate velocities.

        delta_time : float, default=1.0
            The time increment used for generating partitioning plate stage rotations. 1.0 Ma by default.


        Returns
        -------
        all_velocities.T : 2D numpy list
            A transposed 2D numpy list with two rows and a number of columns equal to the number of x,y Cartesian velocity
            components obtained (and thus the number of feature points extracted from a supplied feature). Each list column
            stores one point’s x,y, velocity components along its two rows.
        """
        time = float(time)

        rotation_model = self.plate_reconstruction.rotation_model
        all_velocities = np.empty((len(self.features), 2))

        for i, feature in enumerate(self.features):
            geometry = feature.get_geometry()
            partitioning_plate_id = feature.get_reconstruction_plate_id()
            equivalent_stage_rotation = rotation_model.get_rotation(
                time, partitioning_plate_id, time + delta_time
            )

            velocity_vectors = pygplates.calculate_velocities(
                [geometry],
                equivalent_stage_rotation,
                delta_time,
                pygplates.VelocityUnits.cms_per_yr,
            )

            velocities = (
                pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                    [geometry], velocity_vectors
                )
            )

            all_velocities[i] = velocities[0].get_y(), velocities[0].get_x()

        return list(all_velocities.T)

    def motion_path(self, time_array, anchor_plate_id=0, return_rate_of_motion=False):
        """Create a path of points to mark the trajectory of a plate's motion
        through geological time.

        Parameters
        ----------
        time_array : arr
            An array of reconstruction times at which to determine the trajectory
            of a point on a plate. For example:

                import numpy as np
                min_time = 30
                max_time = 100
                time_step = 2.5
                time_array = np.arange(min_time, max_time + time_step, time_step)

        anchor_plate_id : int, default=0
            The ID of the anchor plate.
        return_rate_of_motion : bool, default=False
            Choose whether to return the rate of plate motion through time for each

        Returns
        -------
        rlons : ndarray
            An n-dimensional array with columns containing the longitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        rlats : ndarray
            An n-dimensional array with columns containing the latitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        """
        time_array = np.atleast_1d(time_array)

        # ndarrays to fill with reconstructed points and
        # rates of motion (if requested)
        rlons = np.empty((len(time_array), len(self.lons)))
        rlats = np.empty((len(time_array), len(self.lons)))

        for i, point_feature in enumerate(self.FeatureCollection):
            # Create the motion path feature
            motion_path_feature = pygplates.Feature.create_motion_path(
                point_feature.get_geometry(),
                time_array.tolist(),
                valid_time=(time_array.max(), time_array.min()),
                # relative_plate=int(self.plate_id[i]),
                # reconstruction_plate_id=int(anchor_plate_id))
                relative_plate=int(self.plate_id[i]),
                reconstruction_plate_id=int(anchor_plate_id),
            )

            reconstructed_motion_paths = self.plate_reconstruction.reconstruct(
                motion_path_feature,
                to_time=0,
                # from_time=0,
                reconstruct_type=pygplates.ReconstructType.motion_path,
                anchor_plate_id=int(anchor_plate_id),
            )

            # Turn motion paths in to lat-lon coordinates
            for reconstructed_motion_path in reconstructed_motion_paths:
                trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

            lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

            rlons[:, i] = lon
            rlats[:, i] = lat

            # Obtain step-plot coordinates for rate of motion
            if return_rate_of_motion is True:
                StepTimes = np.empty(((len(time_array) - 1) * 2, len(self.lons)))
                StepRates = np.empty(((len(time_array) - 1) * 2, len(self.lons)))

                # Get timestep
                TimeStep = []
                for j in range(len(time_array) - 1):
                    diff = time_array[j + 1] - time_array[j]
                    TimeStep.append(diff)

                # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
                # plate relative to the fixed plate in each time step
                Dist = []
                for reconstructed_motion_path in reconstructed_motion_paths:
                    for (
                        segment
                    ) in reconstructed_motion_path.get_motion_path().get_segments():
                        Dist.append(
                            segment.get_arc_length()
                            * _tools.geocentric_radius(
                                segment.get_start_point().to_lat_lon()[0]
                            )
                            / 1e3
                        )

                # Note that the motion path coordinates come out starting with the oldest time and working forwards
                # So, to match our 'times' array, we flip the order
                Dist = np.flipud(Dist)

                # Get rate of motion as distance per Myr
                Rate = np.asarray(Dist) / TimeStep

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

        if return_rate_of_motion is True:
            return (
                np.squeeze(rlons),
                np.squeeze(rlats),
                np.squeeze(StepTimes),
                np.squeeze(StepRates),
            )
        else:
            return np.squeeze(rlons), np.squeeze(rlats)

    def flowline(
        self, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False
    ):
        """Create a path of points to track plate motion away from
        spreading ridges over time using half-stage rotations.

        Parameters
        ----------
        lons : arr
            An array of longitudes of points along spreading ridges.
        lats : arr
            An array of latitudes of points along spreading ridges.
        time_array : arr
            A list of times to obtain seed point locations at.
        left_plate_ID : int
            The plate ID of the polygon to the left of the spreading
            ridge.
        right_plate_ID : int
            The plate ID of the polygon to the right of the spreading
            ridge.
        return_rate_of_motion : bool, default False
            Choose whether to return a step time and step rate array for
            a step-plot of flowline motion.

        Returns
        -------
        left_lon : ndarray
            The longitudes of the __left__ flowline for n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        left_lat : ndarray
            The latitudes of the __left__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lon : ndarray
            The longitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lat : ndarray
            The latitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.

        Examples
        --------
        To access the ith seed point's left and right latitudes and
        longitudes:

            for i in np.arange(0,len(seed_points)):
                left_flowline_longitudes = left_lon[:,i]
                left_flowline_latitudes = left_lat[:,i]
                right_flowline_longitudes = right_lon[:,i]
                right_flowline_latitudes = right_lat[:,i]
        """
        model = self.plate_reconstruction
        return model.create_flowline(
            self.lons,
            self.lats,
            time_array,
            left_plate_ID,
            right_plate_ID,
            return_rate_of_motion,
        )

    def _get_dataframe(self):
        import geopandas as gpd

        data = dict()
        data["Longitude"] = self.lons
        data["Latitude"] = self.lats
        data["Plate_ID"] = self.plate_id
        for key in self.attributes:
            data[key] = self.attributes[key]

        return gpd.GeoDataFrame(data)

    def save(self, filename):
        """Saves the feature collection used in the Points object under a given filename to the current directory.

        The file format is determined from the filename extension.

        Parameters
        ----------
        filename : string
            Can be provided as a string including the filename and the file format needed.

        Returns
        -------
        Feature collection saved under given filename to current directory.
        """
        filename = str(filename)

        if filename.endswith((".csv", ".txt", ".dat")):
            df = self._get_dataframe()
            df.to_csv(filename, index=False)

        elif filename.endswith((".xls", ".xlsx")):
            df = self._get_dataframe()
            df.to_excel(filename, index=False)

        elif filename.endswith("xml"):
            df = self._get_dataframe()
            df.to_xml(filename, index=False)

        elif filename.endswith(".gpml") or filename.endswith(".gpmlz"):
            self.FeatureCollection.write(filename)

        else:
            raise ValueError(
                "Cannot save to specified file type. Use csv, gpml, or xls file extension."
            )

    def rotate_reference_frames(
        self,
        reconstruction_time,
        from_rotation_features_or_model=None,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        to_rotation_features_or_model=None,    # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        from_rotation_reference_plate=0,
        to_rotation_reference_plate=0,
        non_reference_plate=701,
        output_name=None,
        return_array=False,
    ):
        """Rotate a grid defined in one plate model reference frame 
        within a gplately.Raster object to another plate 
        reconstruction model reference frame.

        Parameters
        ----------
        reconstruction_time : float
            The time at which to rotate the reconstructed points.
        from_rotation_features_or_model : str, list of str, or instance of `pygplates.RotationModel`
            A filename, or a list of filenames, or a pyGPlates 
            RotationModel object that defines the rotation model
            that the input grid is currently associated with.
            `self.plate_reconstruction.rotation_model` is default.
        to_rotation_features_or_model : str, list of str, or instance of `pygplates.RotationModel`
            A filename, or a list of filenames, or a pyGPlates 
            RotationModel object that defines the rotation model
            that the input grid shall be rotated with.
            `self.plate_reconstruction.rotation_model` is default.
        from_rotation_reference_plate : int, default = 0
            The current reference plate for the plate model the points
            are defined in. Defaults to the anchor plate 0.
        to_rotation_reference_plate : int, default = 0
            The desired reference plate for the plate model the points
            to be rotated to. Defaults to the anchor plate 0.
        non_reference_plate : int, default = 701
            An arbitrary placeholder reference frame with which 
            to define the "from" and "to" reference frames.
        output_name : str, default None
            If passed, the rotated points are saved as a gpml to this filename.

        Returns
        -------
        gplately.Points()
            An instance of the gplately.Points object containing the rotated points.
        """

        if from_rotation_features_or_model is None:
            from_rotation_features_or_model = self.plate_reconstruction.rotation_model
        if to_rotation_features_or_model is None:
            to_rotation_features_or_model = self.plate_reconstruction.rotation_model


        # Create the pygplates.FiniteRotation that rotates 
        # between the two reference frames.
        from_rotation_model = pygplates.RotationModel(
            from_rotation_features_or_model
        )
        to_rotation_model = pygplates.RotationModel(
            to_rotation_features_or_model
        )
        from_rotation = from_rotation_model.get_rotation(
            reconstruction_time, 
            non_reference_plate, 
            anchor_plate_id=from_rotation_reference_plate
        )
        to_rotation = to_rotation_model.get_rotation(
            reconstruction_time, 
            non_reference_plate, 
            anchor_plate_id=to_rotation_reference_plate
        )
        reference_frame_conversion_rotation = to_rotation * from_rotation.get_inverse()

        # reconstruct points to reconstruction_time
        lons, lats = self.reconstruct(
            reconstruction_time,
            anchor_plate_id=from_rotation_reference_plate,
            return_array=True)

        # convert FeatureCollection to MultiPointOnSphere
        input_points = pygplates.MultiPointOnSphere((lat, lon) for lon, lat in zip(lons, lats))

        # Rotate grid nodes to the other reference frame
        output_points = reference_frame_conversion_rotation * input_points

        # Assemble rotated points with grid values.
        out_lon = np.empty_like(self.lons)
        out_lat = np.empty_like(self.lats)
        for i, point in enumerate(output_points):
            out_lat[i], out_lon[i] = point.to_lat_lon()

        if return_array:
            return out_lon, out_lat
        else:
            return Points(self.plate_reconstruction, out_lon, out_lat, time=reconstruction_time, plate_id=self.plate_id)

Instance variables

var size

Number of points

Expand source code
@property
def size(self):
    """Number of points"""
    return len(self.lons)

Methods

def add_attributes(self, **kwargs)

Adds the value of a feature attribute associated with a key.

Example

# Define latitudes and longitudes to set up a Points object
pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add the attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

print(gpts.attributes)

The output would be:

{'a': [10, 2, 2], 'b': [2, 3, 3], 'c': [30, 0, 0]}

Parameters

**kwargs : sequence of key=item/s
A single key=value pair, or a sequence of key=value pairs denoting the name and value of an attribute.

Notes

  • An assertion is raised if the number of points in the Points object is not equal to the number of values associated with an attribute key. For example, consider an instance of the Points object with 3 points. If the points are ascribed an attribute temperature, there must be one temperature value per point, i.e. temperature = [20, 15, 17.5].
Expand source code
def add_attributes(self, **kwargs):
    """Adds the value of a feature attribute associated with a key.

    Example
    -------

        # Define latitudes and longitudes to set up a Points object
        pt_lons = np.array([140., 150., 160.])
        pt_lats = np.array([-30., -40., -50.])

        gpts = gplately.Points(model, pt_lons, pt_lats)

        # Add the attributes a, b and c to the points in the Points object
        gpts.add_attributes(
            a=[10,2,2],
            b=[2,3,3],
            c=[30,0,0],
        )

        print(gpts.attributes)

    The output would be:

        {'a': [10, 2, 2], 'b': [2, 3, 3], 'c': [30, 0, 0]}

    Parameters
    ----------
    **kwargs : sequence of key=item/s
        A single key=value pair, or a sequence of key=value pairs denoting the name and
        value of an attribute.


    Notes
    -----
    * An **assertion** is raised if the number of points in the Points object is not equal
    to the number of values associated with an attribute key. For example, consider an instance
    of the Points object with 3 points. If the points are ascribed an attribute `temperature`,
    there must be one `temperature` value per point, i.e. `temperature = [20, 15, 17.5]`.

    """
    keys = kwargs.keys()

    for key in kwargs:
        attribute = kwargs[key]

        # make sure attribute is the same size as self.lons
        if type(attribute) is int or type(attribute) is float:
            array = np.full(self.lons.size, attribute)
            attribute = array
        elif isinstance(attribute, np.ndarray):
            if attribute.size == 1:
                array = np.full(self.lons.size, attribute, dtype=attribute.dtype)
                attribute = array

        assert (
            len(attribute) == self.lons.size
        ), "Size mismatch, ensure attributes have the same number of entries as Points"
        self.attributes[key] = attribute

    if any(kwargs):
        # add these to the FeatureCollection
        for f, feature in enumerate(self.FeatureCollection):
            for key in keys:
                # extract value for each row in attribute
                val = self.attributes[key][f]

                # set this attribute on the feature
                feature.set_shapefile_attribute(key, val)
def copy(self)

Returns a copy of the Points object

Returns

Points
A copy of the current Points object
Expand source code
def copy(self):
    """Returns a copy of the Points object

    Returns
    -------
    Points
        A copy of the current Points object
    """
    gpts = Points(
        self.plate_reconstruction,
        self.lons.copy(),
        self.lats.copy(),
        self.time,
        self.plate_id.copy(),
    )
    gpts.add_attributes(**self.attributes.copy())
def flowline(self, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False)

Create a path of points to track plate motion away from spreading ridges over time using half-stage rotations.

Parameters

lons : arr
An array of longitudes of points along spreading ridges.
lats : arr
An array of latitudes of points along spreading ridges.
time_array : arr
A list of times to obtain seed point locations at.
left_plate_ID : int
The plate ID of the polygon to the left of the spreading ridge.
right_plate_ID : int
The plate ID of the polygon to the right of the spreading ridge.
return_rate_of_motion : bool, default False
Choose whether to return a step time and step rate array for a step-plot of flowline motion.

Returns

left_lon : ndarray
The longitudes of the left flowline for n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
left_lat : ndarray
The latitudes of the left flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lon : ndarray
The longitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lat : ndarray
The latitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.

Examples

To access the ith seed point's left and right latitudes and longitudes:

for i in np.arange(0,len(seed_points)):
    left_flowline_longitudes = left_lon[:,i]
    left_flowline_latitudes = left_lat[:,i]
    right_flowline_longitudes = right_lon[:,i]
    right_flowline_latitudes = right_lat[:,i]
Expand source code
def flowline(
    self, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False
):
    """Create a path of points to track plate motion away from
    spreading ridges over time using half-stage rotations.

    Parameters
    ----------
    lons : arr
        An array of longitudes of points along spreading ridges.
    lats : arr
        An array of latitudes of points along spreading ridges.
    time_array : arr
        A list of times to obtain seed point locations at.
    left_plate_ID : int
        The plate ID of the polygon to the left of the spreading
        ridge.
    right_plate_ID : int
        The plate ID of the polygon to the right of the spreading
        ridge.
    return_rate_of_motion : bool, default False
        Choose whether to return a step time and step rate array for
        a step-plot of flowline motion.

    Returns
    -------
    left_lon : ndarray
        The longitudes of the __left__ flowline for n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    left_lat : ndarray
        The latitudes of the __left__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    right_lon : ndarray
        The longitudes of the __right__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.
    right_lat : ndarray
        The latitudes of the __right__ flowline of n seed points.
        There are n columns for n seed points, and m rows
        for m time steps in `time_array`.

    Examples
    --------
    To access the ith seed point's left and right latitudes and
    longitudes:

        for i in np.arange(0,len(seed_points)):
            left_flowline_longitudes = left_lon[:,i]
            left_flowline_latitudes = left_lat[:,i]
            right_flowline_longitudes = right_lon[:,i]
            right_flowline_latitudes = right_lat[:,i]
    """
    model = self.plate_reconstruction
    return model.create_flowline(
        self.lons,
        self.lats,
        time_array,
        left_plate_ID,
        right_plate_ID,
        return_rate_of_motion,
    )
def get_geodataframe(self)

Returns the output of Points.get_geopandas_dataframe().

Adds a shapely point gplately.geometry attribute to each point in the Points object. pandas.DataFrame that has a column with geometry Any existing point attributes are kept.

Returns

GeoDataFrame : instance of geopandas.GeoDataFrame
A pandas.DataFrame with rows equal to the number of points in the Points object, and an additional column containing a shapely gplately.geometry attribute.

Example

pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add sample attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

gpts.get_geopandas_dataframe()

…has the output:

    a  b   c                     geometry
0  10  2  30  POINT (140.00000 -30.00000)
1   2  3   0  POINT (150.00000 -40.00000)
2   2  3   0  POINT (160.00000 -50.00000)
Expand source code
def get_geodataframe(self):
    """Returns the output of `Points.get_geopandas_dataframe()`.

    Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
    pandas.DataFrame that has a column with geometry
    Any existing point attributes are kept.

    Returns
    -------
    GeoDataFrame : instance of `geopandas.GeoDataFrame`
        A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
        and an additional column containing a shapely `geometry` attribute.

    Example
    -------

        pt_lons = np.array([140., 150., 160.])
        pt_lats = np.array([-30., -40., -50.])

        gpts = gplately.Points(model, pt_lons, pt_lats)

        # Add sample attributes a, b and c to the points in the Points object
        gpts.add_attributes(
            a=[10,2,2],
            b=[2,3,3],
            c=[30,0,0],
        )

        gpts.get_geopandas_dataframe()

    ...has the output:

            a  b   c                     geometry
        0  10  2  30  POINT (140.00000 -30.00000)
        1   2  3   0  POINT (150.00000 -40.00000)
        2   2  3   0  POINT (160.00000 -50.00000)


    """
    return self.get_geopandas_dataframe()
def get_geopandas_dataframe(self)

Adds a shapely point gplately.geometry attribute to each point in the Points object. pandas.DataFrame that has a column with geometry Any existing point attributes are kept.

Returns

GeoDataFrame : instance of geopandas.GeoDataFrame
A pandas.DataFrame with rows equal to the number of points in the Points object, and an additional column containing a shapely gplately.geometry attribute.

Example

pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add sample attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

gpts.get_geopandas_dataframe()

…has the output:

    a  b   c                     geometry
0  10  2  30  POINT (140.00000 -30.00000)
1   2  3   0  POINT (150.00000 -40.00000)
2   2  3   0  POINT (160.00000 -50.00000)
Expand source code
def get_geopandas_dataframe(self):
    """Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
    pandas.DataFrame that has a column with geometry
    Any existing point attributes are kept.

    Returns
    -------
    GeoDataFrame : instance of `geopandas.GeoDataFrame`
        A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
        and an additional column containing a shapely `geometry` attribute.

    Example
    -------

        pt_lons = np.array([140., 150., 160.])
        pt_lats = np.array([-30., -40., -50.])

        gpts = gplately.Points(model, pt_lons, pt_lats)

        # Add sample attributes a, b and c to the points in the Points object
        gpts.add_attributes(
            a=[10,2,2],
            b=[2,3,3],
            c=[30,0,0],
        )

        gpts.get_geopandas_dataframe()

    ...has the output:

            a  b   c                     geometry
        0  10  2  30  POINT (140.00000 -30.00000)
        1   2  3   0  POINT (150.00000 -40.00000)
        2   2  3   0  POINT (160.00000 -50.00000)


    """
    import geopandas as gpd
    from shapely import geometry

    # create shapely points
    points = []
    for lon, lat in zip(self.lons, self.lats):
        points.append(geometry.Point(lon, lat))

    attributes = self.attributes.copy()
    attributes["geometry"] = points

    return gpd.GeoDataFrame(attributes, geometry="geometry")
def motion_path(self, time_array, anchor_plate_id=0, return_rate_of_motion=False)

Create a path of points to mark the trajectory of a plate's motion through geological time.

Parameters

time_array : arr
An array of reconstruction times at which to determine the trajectory of a point on a plate. For example:
import numpy as np
min_time = 30
max_time = 100
time_step = 2.5
time_array = np.arange(min_time, max_time + time_step, time_step)
anchor_plate_id : int, default=0
The ID of the anchor plate.
return_rate_of_motion : bool, default=False
Choose whether to return the rate of plate motion through time for each

Returns

rlons : ndarray
An n-dimensional array with columns containing the longitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
rlats : ndarray
An n-dimensional array with columns containing the latitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
Expand source code
def motion_path(self, time_array, anchor_plate_id=0, return_rate_of_motion=False):
    """Create a path of points to mark the trajectory of a plate's motion
    through geological time.

    Parameters
    ----------
    time_array : arr
        An array of reconstruction times at which to determine the trajectory
        of a point on a plate. For example:

            import numpy as np
            min_time = 30
            max_time = 100
            time_step = 2.5
            time_array = np.arange(min_time, max_time + time_step, time_step)

    anchor_plate_id : int, default=0
        The ID of the anchor plate.
    return_rate_of_motion : bool, default=False
        Choose whether to return the rate of plate motion through time for each

    Returns
    -------
    rlons : ndarray
        An n-dimensional array with columns containing the longitudes of
        the seed points at each timestep in `time_array`. There are n
        columns for n seed points.
    rlats : ndarray
        An n-dimensional array with columns containing the latitudes of
        the seed points at each timestep in `time_array`. There are n
        columns for n seed points.
    """
    time_array = np.atleast_1d(time_array)

    # ndarrays to fill with reconstructed points and
    # rates of motion (if requested)
    rlons = np.empty((len(time_array), len(self.lons)))
    rlats = np.empty((len(time_array), len(self.lons)))

    for i, point_feature in enumerate(self.FeatureCollection):
        # Create the motion path feature
        motion_path_feature = pygplates.Feature.create_motion_path(
            point_feature.get_geometry(),
            time_array.tolist(),
            valid_time=(time_array.max(), time_array.min()),
            # relative_plate=int(self.plate_id[i]),
            # reconstruction_plate_id=int(anchor_plate_id))
            relative_plate=int(self.plate_id[i]),
            reconstruction_plate_id=int(anchor_plate_id),
        )

        reconstructed_motion_paths = self.plate_reconstruction.reconstruct(
            motion_path_feature,
            to_time=0,
            # from_time=0,
            reconstruct_type=pygplates.ReconstructType.motion_path,
            anchor_plate_id=int(anchor_plate_id),
        )

        # Turn motion paths in to lat-lon coordinates
        for reconstructed_motion_path in reconstructed_motion_paths:
            trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

        lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

        rlons[:, i] = lon
        rlats[:, i] = lat

        # Obtain step-plot coordinates for rate of motion
        if return_rate_of_motion is True:
            StepTimes = np.empty(((len(time_array) - 1) * 2, len(self.lons)))
            StepRates = np.empty(((len(time_array) - 1) * 2, len(self.lons)))

            # Get timestep
            TimeStep = []
            for j in range(len(time_array) - 1):
                diff = time_array[j + 1] - time_array[j]
                TimeStep.append(diff)

            # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
            # plate relative to the fixed plate in each time step
            Dist = []
            for reconstructed_motion_path in reconstructed_motion_paths:
                for (
                    segment
                ) in reconstructed_motion_path.get_motion_path().get_segments():
                    Dist.append(
                        segment.get_arc_length()
                        * _tools.geocentric_radius(
                            segment.get_start_point().to_lat_lon()[0]
                        )
                        / 1e3
                    )

            # Note that the motion path coordinates come out starting with the oldest time and working forwards
            # So, to match our 'times' array, we flip the order
            Dist = np.flipud(Dist)

            # Get rate of motion as distance per Myr
            Rate = np.asarray(Dist) / TimeStep

            # Manipulate arrays to get a step plot
            StepRate = np.zeros(len(Rate) * 2)
            StepRate[::2] = Rate
            StepRate[1::2] = Rate

            StepTime = np.zeros(len(Rate) * 2)
            StepTime[::2] = time_array[:-1]
            StepTime[1::2] = time_array[1:]

            # Append the nth point's step time and step rate coordinates to the ndarray
            StepTimes[:, i] = StepTime
            StepRates[:, i] = StepRate * 0.1  # cm/yr

    if return_rate_of_motion is True:
        return (
            np.squeeze(rlons),
            np.squeeze(rlats),
            np.squeeze(StepTimes),
            np.squeeze(StepRates),
        )
    else:
        return np.squeeze(rlons), np.squeeze(rlats)
def plate_velocity(self, time, delta_time=1)

Calculates the x and y components of tectonic plate velocities at a particular geological time.

This method accesses and uses the rotation_model attribute from the PlateReconstruction object and uses the Points object's self.features attribute. Feature points are extracted and assigned plate IDs. These IDs are used to obtain the equivalent stage rotations of identified tectonic plates over a time interval delta_time. Each feature point and its stage rotation are used to calculate the point's plate velocity at a particular geological time. Obtained velocities for each domain point are represented in the north-east-down coordinate system, and their x,y Cartesian coordinate components are extracted.

Parameters

time : float
The specific geological time (Ma) at which to calculate plate velocities.
delta_time : float, default=1.0
The time increment used for generating partitioning plate stage rotations. 1.0 Ma by default.

Returns

all_velocities.T : 2D numpy list
A transposed 2D numpy list with two rows and a number of columns equal to the number of x,y Cartesian velocity components obtained (and thus the number of feature points extracted from a supplied feature). Each list column stores one point’s x,y, velocity components along its two rows.
Expand source code
def plate_velocity(self, time, delta_time=1):
    """Calculates the x and y components of tectonic plate velocities at a particular geological time.

    This method accesses and uses the `rotation_model` attribute from the `PlateReconstruction` object and uses the `Points`
    object's `self.features` attribute. Feature points are extracted and assigned plate IDs. These IDs are used to obtain the
    equivalent stage rotations of identified tectonic plates over a time interval `delta_time`. Each feature point and its stage
    rotation are used to calculate the point's plate velocity at a particular geological time. Obtained velocities for each domain
    point are represented in the north-east-down coordinate system, and their x,y Cartesian coordinate components are extracted.

    Parameters
    ----------
    time : float
        The specific geological time (Ma) at which to calculate plate velocities.

    delta_time : float, default=1.0
        The time increment used for generating partitioning plate stage rotations. 1.0 Ma by default.


    Returns
    -------
    all_velocities.T : 2D numpy list
        A transposed 2D numpy list with two rows and a number of columns equal to the number of x,y Cartesian velocity
        components obtained (and thus the number of feature points extracted from a supplied feature). Each list column
        stores one point’s x,y, velocity components along its two rows.
    """
    time = float(time)

    rotation_model = self.plate_reconstruction.rotation_model
    all_velocities = np.empty((len(self.features), 2))

    for i, feature in enumerate(self.features):
        geometry = feature.get_geometry()
        partitioning_plate_id = feature.get_reconstruction_plate_id()
        equivalent_stage_rotation = rotation_model.get_rotation(
            time, partitioning_plate_id, time + delta_time
        )

        velocity_vectors = pygplates.calculate_velocities(
            [geometry],
            equivalent_stage_rotation,
            delta_time,
            pygplates.VelocityUnits.cms_per_yr,
        )

        velocities = (
            pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                [geometry], velocity_vectors
            )
        )

        all_velocities[i] = velocities[0].get_y(), velocities[0].get_x()

    return list(all_velocities.T)
def reconstruct(self, time, anchor_plate_id=None, return_array=False, **kwargs)

Reconstructs regular geological features, motion paths or flowlines to a specific geological time and extracts the latitudinal and longitudinal points of these features.

Note: this method accesses and uses the rotation model attribute from the PointReconstruction object, and reconstructs the feature lat-lon point attributes of the Points object.

Parameters

time : float
The specific geological time (Ma) to reconstruct features to.
anchor_plate_id : int, default=None
Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made with respect to the anchor_plate_ID specified in the PlateReconstruction object, which is a default plate ID of 0 unless otherwise specified.
return_array : bool, default False
Return a numpy.ndarray, rather than a Points object.
**reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
The specific reconstruction type to generate based on input feature geometry type. Can be provided as ReconstructType.feature_geometry to only reconstruct regular feature geometries, or ReconstructType.MotionPath to only reconstruct motion path features, or ReconstructType.Flowline to only reconstruct flowline features. Generates :class:reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:reconstructed motion paths’, or :class:`reconstructed flowlines’ respectively.
**group_with_feature : bool, default=False
Used to group reconstructed geometries with their features. This can be useful when a feature has more than one geometry and hence more than one reconstructed geometry. The output reconstructed_geometries then becomes a list of tuples where each tuple contains a :class:feature<Feature> and a list of reconstructed geometries. Note: this keyword argument only applies when reconstructed_geometries is a list because exported files are always grouped with their features. This is applicable to all ReconstructType features.
**export_wrap_to_dateline : bool, default=True
Wrap/clip reconstructed geometries to the dateline (currently ignored).

Returns

rlons : list of float
A 1D numpy array enclosing all reconstructed point features' longitudes.
rlats : list of float
A 1D numpy array enclosing all reconstructed point features' latitudes.

Raises

NotImplementedError
if the starting time for reconstruction from_time is not equal to 0.0
Expand source code
def reconstruct(self, time, anchor_plate_id=None, return_array=False, **kwargs):
    """Reconstructs regular geological features, motion paths or flowlines to a specific geological time and extracts
    the latitudinal and longitudinal points of these features.

    Note: this method accesses and uses the rotation model attribute from the PointReconstruction object, and reconstructs
    the feature lat-lon point attributes of the Points object.

    Parameters
    ----------
    time : float
        The specific geological time (Ma) to reconstruct features to.

    anchor_plate_id : int, default=None
        Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
        with respect to the anchor_plate_ID specified in the `gplately.PlateReconstruction` object,
        which is a default plate ID of 0 unless otherwise specified.

    return_array : bool, default False
        Return a `numpy.ndarray`, rather than a `Points` object.

    **reconstruct_type : ReconstructType, default=ReconstructType.feature_geometry
        The specific reconstruction type to generate based on input feature geometry type. Can be provided as
        ReconstructType.feature_geometry to only reconstruct regular feature geometries, or ReconstructType.MotionPath to
        only reconstruct motion path features, or ReconstructType.Flowline to only reconstruct flowline features. Generates
        :class:`reconstructed feature geometries<ReconstructedFeatureGeometry>’, or :class:`reconstructed motion
        paths<ReconstructedMotionPath>’, or :class:`reconstructed flowlines<ReconstructedFlowline>’ respectively.

    **group_with_feature : bool, default=False
        Used to group reconstructed geometries with their features. This can be useful when a feature has more than one
        geometry and hence more than one reconstructed geometry. The output *reconstructed_geometries* then becomes a
        list of tuples where each tuple contains a :class:`feature<Feature>` and a ``list`` of reconstructed geometries.
        Note: this keyword argument only applies when *reconstructed_geometries* is a list because exported files are
        always grouped with their features. This is applicable to all ReconstructType features.

    **export_wrap_to_dateline : bool, default=True
        Wrap/clip reconstructed geometries to the dateline (currently ignored).

    Returns
    -------
    rlons : list of float
        A 1D numpy array enclosing all reconstructed point features' longitudes.

    rlats : list of float
        A 1D numpy array enclosing all reconstructed point features' latitudes.

    Raises
    ------
    NotImplementedError
        if the starting time for reconstruction `from_time` is not equal to 0.0
    """
    from_time = self.time
    to_time = time

    if not anchor_plate_id:
        anchor_plate_id = self.plate_reconstruction.anchor_plate_id

    reconstructed_features = self.plate_reconstruction.reconstruct(
        self.features, to_time, from_time, anchor_plate_id=anchor_plate_id, **kwargs
    )

    rlons, rlats = _tools.extract_feature_lonlat(reconstructed_features)
    if return_array:
        return rlons, rlats
    else:
        gpts = Points(
            self.plate_reconstruction,
            rlons,
            rlats,
            time=to_time,
            plate_id=self.plate_id,
        )
        gpts.add_attributes(**self.attributes.copy())
        return gpts
def reconstruct_to_birth_age(self, ages, anchor_plate_id=None, **kwargs)

Reconstructs point features supplied to the Points object from the supplied initial time (self.time) to a range of times. The number of supplied times must equal the number of point features supplied to the Points object.

Attributes

ages : array
Geological times to reconstruct features to. Must have the same length as the Points object's self.features attribute (which holds all point features represented on a unit length sphere in 3D Cartesian coordinates).
anchor_plate_id : int, default=None
Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made with respect to the anchor_plate_ID specified in the PlateReconstruction object, which is a default plate ID of 0 unless otherwise specified.
**kwargs
Additional keyword arguments for the PlateReconstruction.reconstruct() method.

Raises

ValueError
If the number of ages and number of point features supplied to the Points object are not identical.

Returns

rlons, rlats : float
The longitude and latitude coordinate lists of all point features reconstructed to all specified ages.

Examples

To reconstruct n seed points' locations to B Ma (for this example n=2, with (lon,lat) = (78,30) and (56,22) at time=0 Ma, and we reconstruct to B=10 Ma):

# Longitude and latitude of n=2 seed points
pt_lon = np.array([78., 56])
pt_lat = np.array([30., 22])

# Call the Points object!
gpts = gplately.Points(model, pt_lon, pt_lat)
print(gpts.features[0].get_all_geometries())   # Confirms we have features represented as points on a sphere

ages = numpy.linspace(10,10, len(pt_lon))
rlons, rlats = gpts.reconstruct_to_birth_age(ages)
Expand source code
def reconstruct_to_birth_age(self, ages, anchor_plate_id=None, **kwargs):
    """Reconstructs point features supplied to the `Points` object from the supplied initial time (`self.time`)
    to a range of times. The number of supplied times must equal the number of point features supplied to the Points object.

    Attributes
    ----------
    ages : array
        Geological times to reconstruct features to. Must have the same length as the `Points `object's `self.features` attribute
        (which holds all point features represented on a unit length sphere in 3D Cartesian coordinates).
    anchor_plate_id : int, default=None
        Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
        with respect to the anchor_plate_ID specified in the `gplately.PlateReconstruction` object,
        which is a default plate ID of 0 unless otherwise specified.
    **kwargs
        Additional keyword arguments for the `gplately.PlateReconstruction.reconstruct` method.

    Raises
    ------
    ValueError
        If the number of ages and number of point features supplied to the Points object are not identical.

    Returns
    -------
    rlons, rlats : float
        The longitude and latitude coordinate lists of all point features reconstructed to all specified ages.

    Examples
    --------
    To reconstruct n seed points' locations to B Ma (for this example n=2, with (lon,lat) = (78,30) and (56,22) at time=0 Ma,
    and we reconstruct to B=10 Ma):

        # Longitude and latitude of n=2 seed points
        pt_lon = np.array([78., 56])
        pt_lat = np.array([30., 22])

        # Call the Points object!
        gpts = gplately.Points(model, pt_lon, pt_lat)
        print(gpts.features[0].get_all_geometries())   # Confirms we have features represented as points on a sphere

        ages = numpy.linspace(10,10, len(pt_lon))
        rlons, rlats = gpts.reconstruct_to_birth_age(ages)

    """
    from_time = self.time
    if not anchor_plate_id:
        anchor_plate_id = self.plate_reconstruction.anchor_plate_id

    ages = np.array(ages)

    if len(ages) != len(self.features):
        raise ValueError("Number of points and ages must be identical")

    unique_ages = np.unique(ages)
    rlons = np.zeros(ages.shape)
    rlats = np.zeros(ages.shape)

    for age in unique_ages:
        mask_age = ages == age

        reconstructed_features = self.plate_reconstruction.reconstruct(
            self.features, age, from_time, anchor_plate_id=anchor_plate_id, **kwargs
        )

        lons, lats = _tools.extract_feature_lonlat(reconstructed_features)

        rlons[mask_age] = lons[mask_age]
        rlats[mask_age] = lats[mask_age]

    return rlons, rlats
def rotate_reference_frames(self, reconstruction_time, from_rotation_features_or_model=None, to_rotation_features_or_model=None, from_rotation_reference_plate=0, to_rotation_reference_plate=0, non_reference_plate=701, output_name=None, return_array=False)

Rotate a grid defined in one plate model reference frame within a gplately.Raster object to another plate reconstruction model reference frame.

Parameters

reconstruction_time : float
The time at which to rotate the reconstructed points.
from_rotation_features_or_model : str, list of str, or instance of RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid is currently associated with. self.plate_reconstruction.rotation_model is default.
to_rotation_features_or_model : str, list of str, or instance of RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid shall be rotated with. self.plate_reconstruction.rotation_model is default.
from_rotation_reference_plate : int, default = 0
The current reference plate for the plate model the points are defined in. Defaults to the anchor plate 0.
to_rotation_reference_plate : int, default = 0
The desired reference plate for the plate model the points to be rotated to. Defaults to the anchor plate 0.
non_reference_plate : int, default = 701
An arbitrary placeholder reference frame with which to define the "from" and "to" reference frames.
output_name : str, default None
If passed, the rotated points are saved as a gpml to this filename.

Returns

Points
An instance of the gplately.Points object containing the rotated points.
Expand source code
def rotate_reference_frames(
    self,
    reconstruction_time,
    from_rotation_features_or_model=None,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
    to_rotation_features_or_model=None,    # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
    from_rotation_reference_plate=0,
    to_rotation_reference_plate=0,
    non_reference_plate=701,
    output_name=None,
    return_array=False,
):
    """Rotate a grid defined in one plate model reference frame 
    within a gplately.Raster object to another plate 
    reconstruction model reference frame.

    Parameters
    ----------
    reconstruction_time : float
        The time at which to rotate the reconstructed points.
    from_rotation_features_or_model : str, list of str, or instance of `pygplates.RotationModel`
        A filename, or a list of filenames, or a pyGPlates 
        RotationModel object that defines the rotation model
        that the input grid is currently associated with.
        `self.plate_reconstruction.rotation_model` is default.
    to_rotation_features_or_model : str, list of str, or instance of `pygplates.RotationModel`
        A filename, or a list of filenames, or a pyGPlates 
        RotationModel object that defines the rotation model
        that the input grid shall be rotated with.
        `self.plate_reconstruction.rotation_model` is default.
    from_rotation_reference_plate : int, default = 0
        The current reference plate for the plate model the points
        are defined in. Defaults to the anchor plate 0.
    to_rotation_reference_plate : int, default = 0
        The desired reference plate for the plate model the points
        to be rotated to. Defaults to the anchor plate 0.
    non_reference_plate : int, default = 701
        An arbitrary placeholder reference frame with which 
        to define the "from" and "to" reference frames.
    output_name : str, default None
        If passed, the rotated points are saved as a gpml to this filename.

    Returns
    -------
    gplately.Points()
        An instance of the gplately.Points object containing the rotated points.
    """

    if from_rotation_features_or_model is None:
        from_rotation_features_or_model = self.plate_reconstruction.rotation_model
    if to_rotation_features_or_model is None:
        to_rotation_features_or_model = self.plate_reconstruction.rotation_model


    # Create the pygplates.FiniteRotation that rotates 
    # between the two reference frames.
    from_rotation_model = pygplates.RotationModel(
        from_rotation_features_or_model
    )
    to_rotation_model = pygplates.RotationModel(
        to_rotation_features_or_model
    )
    from_rotation = from_rotation_model.get_rotation(
        reconstruction_time, 
        non_reference_plate, 
        anchor_plate_id=from_rotation_reference_plate
    )
    to_rotation = to_rotation_model.get_rotation(
        reconstruction_time, 
        non_reference_plate, 
        anchor_plate_id=to_rotation_reference_plate
    )
    reference_frame_conversion_rotation = to_rotation * from_rotation.get_inverse()

    # reconstruct points to reconstruction_time
    lons, lats = self.reconstruct(
        reconstruction_time,
        anchor_plate_id=from_rotation_reference_plate,
        return_array=True)

    # convert FeatureCollection to MultiPointOnSphere
    input_points = pygplates.MultiPointOnSphere((lat, lon) for lon, lat in zip(lons, lats))

    # Rotate grid nodes to the other reference frame
    output_points = reference_frame_conversion_rotation * input_points

    # Assemble rotated points with grid values.
    out_lon = np.empty_like(self.lons)
    out_lat = np.empty_like(self.lats)
    for i, point in enumerate(output_points):
        out_lat[i], out_lon[i] = point.to_lat_lon()

    if return_array:
        return out_lon, out_lat
    else:
        return Points(self.plate_reconstruction, out_lon, out_lat, time=reconstruction_time, plate_id=self.plate_id)
def save(self, filename)

Saves the feature collection used in the Points object under a given filename to the current directory.

The file format is determined from the filename extension.

Parameters

filename : string
Can be provided as a string including the filename and the file format needed.

Returns

Feature collection saved under given filename to current directory.

Expand source code
def save(self, filename):
    """Saves the feature collection used in the Points object under a given filename to the current directory.

    The file format is determined from the filename extension.

    Parameters
    ----------
    filename : string
        Can be provided as a string including the filename and the file format needed.

    Returns
    -------
    Feature collection saved under given filename to current directory.
    """
    filename = str(filename)

    if filename.endswith((".csv", ".txt", ".dat")):
        df = self._get_dataframe()
        df.to_csv(filename, index=False)

    elif filename.endswith((".xls", ".xlsx")):
        df = self._get_dataframe()
        df.to_excel(filename, index=False)

    elif filename.endswith("xml"):
        df = self._get_dataframe()
        df.to_xml(filename, index=False)

    elif filename.endswith(".gpml") or filename.endswith(".gpmlz"):
        self.FeatureCollection.write(filename)

    else:
        raise ValueError(
            "Cannot save to specified file type. Use csv, gpml, or xls file extension."
        )
class Raster (data=None, plate_reconstruction=None, extent='global', realign=False, resample=None, time=0.0, origin=None, **kwargs)

A class for working with raster data.

Raster's functionalities inclue sampling data at points using spline interpolation, resampling rasters with new X and Y-direction spacings and resizing rasters using new X and Y grid pixel resolutions. NaN-type data in rasters can be replaced with the values of their nearest valid neighbours.

Parameters

data : str or array-like
The raster data, either as a filename (str) or array.
plate_reconstruction : PlateReconstruction
Allows for the accessibility of PlateReconstruction object attributes. Namely, PlateReconstruction object attributes rotation_model, topology_features and static_polygons can be used in the Raster object if called using “self.plate_reconstruction.X”, where X is the attribute.
extent : str or 4-tuple, default: 'global'
4-tuple to specify (min_lon, max_lon, min_lat, max_lat) extents of the raster. If no extents are supplied, full global extent [-180,180,-90,90] is assumed (equivalent to extent='global'). For array data with an upper-left origin, make sure min_lat is greater than max_lat, or specify origin parameter.
resample : 2-tuple, optional
Optionally resample grid, pass spacing in X and Y direction as a 2-tuple e.g. resample=(spacingX, spacingY).
time : float, default: 0.0
The time step represented by the raster data. Used for raster reconstruction.
origin : {'lower', 'upper'}, optional
When data is an array, use this parameter to specify the origin (upper left or lower left) of the data (overriding extent).
**kwargs
Handle deprecated arguments such as PlateReconstruction_object, filename, and array.

Attributes

data : ndarray, shape (ny, nx)
Array containing the underlying raster data. This attribute can be modified after creation of the Raster.
plate_reconstruction : PlateReconstruction
An object of GPlately's PlateReconstruction class, like the rotation_model, a set of reconstructable topology_features and static_polygons that belong to a particular plate model. These attributes can be used in the Raster object if called using “self.plate_reconstruction.X”, where X is the attribute. This attribute can be modified after creation of the Raster.
extent : tuple of floats
Four-element array to specify [min lon, max lon, min lat, max lat] extents of any sampling points. If no extents are supplied, full global extent [-180,180,-90,90] is assumed.
lons : ndarray, shape (nx,)
The x-coordinates of the raster data. This attribute can be modified after creation of the Raster.
lats : ndarray, shape (ny,)
The y-coordinates of the raster data. This attribute can be modified after creation of the Raster.
origin : {'lower', 'upper'}
The origin (lower or upper left) or the data array.
filename : str or None
The filename used to create the Raster object. If the object was created directly from an array, this attribute is None.

Methods

interpolate(lons, lats, method='linear', return_indices=False) Sample gridded data at a set of points using spline interpolation.

resample(spacingX, spacingY, overwrite=False) Resamples the grid using X & Y-spaced lat-lon arrays, meshed with linear interpolation.

resize(resX, resY, overwrite=False) Resizes the grid with a specific resolution and samples points using linear interpolation.

fill_NaNs(overwrite=False) Searches for invalid 'data' cells containing NaN-type entries and replaces NaNs with the value of the nearest valid data cell.

reconstruct(time, fill_value=None, partitioning_features=None, threads=1, anchor_plate_id=0, inplace=False) Reconstruct the raster from its initial time (self.time) to a new time.

Constructs all necessary attributes for the raster object.

Note: either a str path to a netCDF file OR an ndarray representing a grid must be specified.

Parameters

data : str or array-like
The raster data, either as a filename (str) or array.
plate_reconstruction : PlateReconstruction
Allows for the accessibility of PlateReconstruction object attributes. Namely, PlateReconstruction object attributes rotation_model, topology_featues and static_polygons can be used in the points object if called using “self.plate_reconstruction.X”, where X is the attribute.
extent : str or 4-tuple, default: 'global'
4-tuple to specify (min_lon, max_lon, min_lat, max_lat) extents of the raster. If no extents are supplied, full global extent [-180,180,-90,90] is assumed (equivalent to extent='global'). For array data with an upper-left origin, make sure min_lat is greater than max_lat, or specify origin parameter.
resample : 2-tuple, optional
Optionally resample grid, pass spacing in X and Y direction as a 2-tuple e.g. resample=(spacingX, spacingY).
time : float, default: 0.0
The time step represented by the raster data. Used for raster reconstruction.
origin : {'lower', 'upper'}, optional
When data is an array, use this parameter to specify the origin (upper left or lower left) of the data (overriding extent).
**kwargs
Handle deprecated arguments such as PlateReconstruction_object, filename, and array.
Expand source code
class Raster(object):
    """A class for working with raster data.

    `Raster`'s functionalities inclue sampling data at points using spline
    interpolation, resampling rasters with new X and Y-direction spacings and
    resizing rasters using new X and Y grid pixel resolutions. NaN-type data
    in rasters can be replaced with the values of their nearest valid
    neighbours.

    Parameters
    ----------
    data : str or array-like
        The raster data, either as a filename (`str`) or array.

    plate_reconstruction : PlateReconstruction
        Allows for the accessibility of PlateReconstruction object attributes.
        Namely, PlateReconstruction object attributes rotation_model,
        topology_features and static_polygons can be used in the `Raster`
        object if called using “self.plate_reconstruction.X”, where X is the
        attribute.

    extent : str or 4-tuple, default: 'global'
        4-tuple to specify (min_lon, max_lon, min_lat, max_lat) extents
        of the raster. If no extents are supplied, full global extent
        [-180,180,-90,90] is assumed (equivalent to `extent='global'`).
        For array data with an upper-left origin, make sure `min_lat` is
        greater than `max_lat`, or specify `origin` parameter.

    resample : 2-tuple, optional
        Optionally resample grid, pass spacing in X and Y direction as a
        2-tuple e.g. resample=(spacingX, spacingY).

    time : float, default: 0.0
        The time step represented by the raster data. Used for raster
        reconstruction.

    origin : {'lower', 'upper'}, optional
        When `data` is an array, use this parameter to specify the origin
        (upper left or lower left) of the data (overriding `extent`).

    **kwargs
        Handle deprecated arguments such as `PlateReconstruction_object`,
        `filename`, and `array`.

    Attributes
    ----------
    data : ndarray, shape (ny, nx)
        Array containing the underlying raster data. This attribute can be
        modified after creation of the `Raster`.
    plate_reconstruction : PlateReconstruction
        An object of GPlately's `PlateReconstruction` class, like the
        `rotation_model`, a set of reconstructable `topology_features` and
        `static_polygons` that belong to a particular plate model. These
        attributes can be used in the `Raster` object if called using
        “self.plate_reconstruction.X”, where X is the attribute. This
        attribute can be modified after creation of the `Raster`.
    extent : tuple of floats
        Four-element array to specify [min lon, max lon, min lat, max lat]
        extents of any sampling points. If no extents are supplied, full
        global extent [-180,180,-90,90] is assumed.
    lons : ndarray, shape (nx,)
        The x-coordinates of the raster data. This attribute can be modified
        after creation of the `Raster`.
    lats : ndarray, shape (ny,)
        The y-coordinates of the raster data. This attribute can be modified
        after creation of the `Raster`.
    origin : {'lower', 'upper'}
        The origin (lower or upper left) or the data array.
    filename : str or None
        The filename used to create the `Raster` object. If the object was
        created directly from an array, this attribute is `None`.

    Methods
    -------
    interpolate(lons, lats, method='linear', return_indices=False)
        Sample gridded data at a set of points using spline interpolation.

    resample(spacingX, spacingY, overwrite=False)
        Resamples the grid using X & Y-spaced lat-lon arrays, meshed with
        linear interpolation.

    resize(resX, resY, overwrite=False)
        Resizes the grid with a specific resolution and samples points
        using linear interpolation.

    fill_NaNs(overwrite=False)
        Searches for invalid 'data' cells containing NaN-type entries and
        replaces NaNs with the value of the nearest valid data cell.

    reconstruct(time, fill_value=None, partitioning_features=None,
                threads=1, anchor_plate_id=0, inplace=False)
        Reconstruct the raster from its initial time (`self.time`) to a new
        time.
    """
    def __init__(
        self,
        data=None,
        plate_reconstruction=None,
        extent="global",
        realign=False,
        resample=None,
        time=0.0,
        origin=None,
        **kwargs
    ):
        """Constructs all necessary attributes for the raster object.

        Note: either a str path to a netCDF file OR an ndarray representing a grid must be specified.

        Parameters
        ----------
        data : str or array-like
            The raster data, either as a filename (`str`) or array.

        plate_reconstruction : PlateReconstruction
            Allows for the accessibility of PlateReconstruction object attributes. Namely, PlateReconstruction object
            attributes rotation_model, topology_featues and static_polygons can be used in the points object if called using
            “self.plate_reconstruction.X”, where X is the attribute.

        extent : str or 4-tuple, default: 'global'
            4-tuple to specify (min_lon, max_lon, min_lat, max_lat) extents
            of the raster. If no extents are supplied, full global extent
            [-180,180,-90,90] is assumed (equivalent to `extent='global'`).
            For array data with an upper-left origin, make sure `min_lat` is
            greater than `max_lat`, or specify `origin` parameter.

        resample : 2-tuple, optional
            Optionally resample grid, pass spacing in X and Y direction as a
            2-tuple e.g. resample=(spacingX, spacingY).

        time : float, default: 0.0
            The time step represented by the raster data. Used for raster
            reconstruction.

        origin : {'lower', 'upper'}, optional
            When `data` is an array, use this parameter to specify the origin
            (upper left or lower left) of the data (overriding `extent`).

        **kwargs
            Handle deprecated arguments such as `PlateReconstruction_object`,
            `filename`, and `array`.
        """
        if isinstance(data, self.__class__):
            self._data = data._data.copy()
            self.plate_reconstruction = data.plate_reconstruction
            self._lons = data._lons
            self._lats = data._lats
            self._time = data._time
            return

        if "PlateReconstruction_object" in kwargs.keys():
            warnings.warn(
                "`PlateReconstruction_object` keyword argument has been "
                + "deprecated, use `plate_reconstruction` instead",
                DeprecationWarning,
            )
            if plate_reconstruction is None:
                plate_reconstruction = kwargs.pop("PlateReconstruction_object")
        if "filename" in kwargs.keys() and "array" in kwargs.keys():
            raise TypeError(
                "Both `filename` and `array` were provided; use "
                + "one or the other, or use the `data` argument"
            )
        if "filename" in kwargs.keys():
            warnings.warn(
                "`filename` keyword argument has been deprecated, "
                + "use `data` instead",
                DeprecationWarning,
            )
            if data is None:
                data = kwargs.pop("filename")
        if "array" in kwargs.keys():
            warnings.warn(
                "`array` keyword argument has been deprecated, "
                + "use `data` instead",
                DeprecationWarning,
            )
            if data is None:
                data = kwargs.pop("array")
        for key in kwargs.keys():
            raise TypeError(
                "Raster.__init__() got an unexpected keyword argument "
                + "'{}'".format(key)
            )
        self.plate_reconstruction = plate_reconstruction

        if time < 0.0:
            raise ValueError("Invalid time: {}".format(time))
        time = float(time)
        self._time = time

        if data is None:
            raise TypeError(
                "`data` argument (or `filename` or `array`) is required"
            )
        if isinstance(data, str):
            # Filename
            self._filename = data
            self._data, lons, lats = read_netcdf_grid(
                data,
                return_grids=True,
                realign=realign,
                resample=resample,
            )
            self._lons = lons
            self._lats = lats

        else:
            # numpy array
            self._filename = None
            extent = _parse_extent_origin(extent, origin)
            data = _check_grid(data)
            self._data = np.array(data)
            self._lons = np.linspace(extent[0], extent[1], self.data.shape[1])
            self._lats = np.linspace(extent[2], extent[3], self.data.shape[0])
            if realign:
                # realign to -180,180 and flip grid
                self._data, self._lons, self._lats = realign_grid(self._data, self._lons, self._lats)

        if (not isinstance(data, str)) and (resample is not None):
            self.resample(*resample, inplace=True)

    @property
    def time(self):
        """The time step represented by the raster data."""
        return self._time

    @property
    def data(self):
        """The object's raster data.

        Can be modified.
        """
        return self._data

    @data.setter
    def data(self, z):
        z = np.array(z)
        if z.shape != np.shape(self.data):
            raise ValueError(
                "Shape mismatch: old dimensions are {}, new are {}".format(
                    np.shape(self.data),
                    z.shape,
                )
            )
        self._data = z

    @property
    def lons(self):
        """The x-coordinates of the raster data.

        Can be modified.
        """
        return self._lons

    @lons.setter
    def lons(self, x):
        x = np.array(x).ravel()
        if x.size != np.shape(self.data)[1]:
            raise ValueError(
                "Shape mismatch: data x-dimension is {}, new value is {}".format(
                    np.shape(self.data)[1],
                    x.size,
                )
            )
        self._lons = x

    @property
    def lats(self):
        """The y-coordinates of the raster data.

        Can be modified.
        """
        return self._lats

    @lats.setter
    def lats(self, y):
        y = np.array(y).ravel()
        if y.size != np.shape(self.data)[0]:
            raise ValueError(
                "Shape mismatch: data y-dimension is {}, new value is {}".format(
                    np.shape(self.data)[0],
                    y.size,
                )
            )
        self._lats = y

    @property
    def extent(self):
        """The spatial extent (x0, x1, y0, y1) of the data.

        If y0 < y1, the origin is the lower-left corner; else the upper-left.
        """
        return (
            float(self.lons[0]),
            float(self.lons[-1]),
            float(self.lats[0]),
            float(self.lats[-1]),
        )

    @property
    def origin(self):
        """The origin of the data array, used for e.g. plotting."""
        if self.lats[0] < self.lats[-1]:
            return "lower"
        else:
            return "upper"

    @property
    def shape(self):
        """The shape of the data array."""
        return np.shape(self.data)

    @property
    def size(self):
        """The size of the data array."""
        return np.size(self.data)

    @property
    def dtype(self):
        """The data type of the array."""
        return self.data.dtype

    @property
    def ndim(self):
        """The number of dimensions in the array."""
        return np.ndim(self.data)

    @property
    def filename(self):
        """The filename of the raster file used to create the object.

        If a NumPy array was used instead, this attribute is `None`.
        """
        return self._filename

    @property
    def plate_reconstruction(self):
        """The `PlateReconstruction` object to be used for raster
        reconstruction.
        """
        return self._plate_reconstruction

    @plate_reconstruction.setter
    def plate_reconstruction(self, reconstruction):
        if reconstruction is None:
            # Remove `plate_reconstruction` attribute
            pass
        elif not isinstance(reconstruction, _PlateReconstruction):
            # Convert to a `PlateReconstruction` if possible
            try:
                reconstruction = _PlateReconstruction(*reconstruction)
            except Exception:
                reconstruction = _PlateReconstruction(reconstruction)
        self._plate_reconstruction = reconstruction


    def copy(self):
        """ Returns a copy of the Raster
        
        Returns
        -------
        Raster
            A copy of the current Raster object
        """
        return Raster(self.data.copy(), self.plate_reconstruction, self.extent, self.time)

    def interpolate(
        self,
        lons,
        lats,
        method="linear",
        return_indices=False,
    ):
        """Interpolate a set of point data onto the gridded data provided
        to the `Raster` object.

        Parameters
        ----------
        lons, lats : array_like
            The longitudes and latitudes of the points to interpolate onto the
            gridded data. Must be broadcastable to a common shape.
        method : str or int; default: 'linear'
            The order of spline interpolation. Must be an integer in the range
            0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
            respectively.
        return_indices : bool, default=False
            Whether to return the row and column indices of the nearest grid
            points.

        Returns
        -------
        numpy.ndarray
            The values interpolated at the input points.
        indices : 2-tuple of numpy.ndarray
            The i- and j-indices of the nearest grid points to the input
            points, only present if `return_indices=True`.

        Raises
        ------
        ValueError
            If an invalid `method` is provided.
        RuntimeWarning
            If `lats` contains any invalid values outside of the interval
            [-90, 90]. Invalid values will be clipped to this interval.

        Notes
        -----
        If `return_indices` is set to `True`, the nearest array indices
        are returned as a tuple of arrays, in (i, j) or (lat, lon) format.

        An example output:

            # The first array holds the rows of the raster where point data spatially falls near.
            # The second array holds the columns of the raster where point data spatially falls near.
            sampled_indices = (array([1019, 1019, 1019, ..., 1086, 1086, 1087]), array([2237, 2237, 2237, ...,  983,  983,  983]))
        """
        return sample_grid(
            lon=lons,
            lat=lats,
            grid=self,
            method=method,
            return_indices=return_indices,
        )

    def resample(self, spacingX, spacingY, method="linear", inplace=False):
        """Resample the `grid` passed to the `Raster` object with a new `spacingX` and 
        `spacingY` using linear interpolation.

        Notes
        -----
        Ultimately, `resample` changes the lat-lon resolution of the gridded data. The
        larger the x and y spacings given are, the larger the pixellation of raster data. 

        `resample` creates new latitude and longitude arrays with specified spacings in the
        X and Y directions (`spacingX` and `spacingY`). These arrays are linearly interpolated 
        into a new raster. If `inplace` is set to `True`, the respaced latitude array, longitude 
        array and raster will inplace the ones currently attributed to the `Raster` object.

        Parameters
        ----------
        spacingX, spacingY : ndarray
            Specify the spacing in the X and Y directions with which to resample. The larger 
            `spacingX` and `spacingY` are, the larger the raster pixels become (less resolved).
            Note: to keep the size of the raster consistent, set `spacingX = spacingY`; 
            otherwise, if for example `spacingX > spacingY`, the raster will appear stretched 
            longitudinally. 

        method : str or int; default: 'linear'
            The order of spline interpolation. Must be an integer in the range
            0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
            respectively.

        inplace : bool, default=False
            Choose to overwrite the data (the `self.data` attribute), latitude array 
            (`self.lats`) and longitude array (`self.lons`) currently attributed to the 
            `Raster` object. 

        Returns
        -------
        Raster
            The resampled grid. If `inplace` is set to `True`, this raster overwrites the
            one attributed to `data`.
        """
        spacingX = np.abs(spacingX)
        spacingY = np.abs(spacingY)
        if self.origin == "upper":
            spacingY *= -1.0

        lons = np.arange(self.extent[0], self.extent[1]+spacingX, spacingX)
        lats = np.arange(self.extent[2], self.extent[3]+spacingY, spacingY)
        lonq, latq = np.meshgrid(lons, lats)

        data = self.interpolate(lonq, latq, method=method)
        if inplace:
            self._data = data
            self._lons = lons
            self._lats = lats
        else:
            return Raster(data, self.plate_reconstruction, self.extent, self.time)


    def resize(self, resX, resY, inplace=False, method="linear", return_array=False):
        """Resize the grid passed to the `Raster` object with a new x and y resolution 
        (`resX` and `resY`) using linear interpolation. 

        Notes
        -----
        Ultimately, `resize` "stretches" a raster in the x and y directions. The larger
        the resolutions in x and y, the more stretched the raster appears in x and y.

        It creates new latitude and longitude arrays with specific resolutions in 
        the X and Y directions (`resX` and `resY`). These arrays are linearly interpolated
        into a new raster. If `inplace` is set to `True`, the resized latitude, longitude 
        arrays and raster will inplace the ones currently attributed to the `Raster` object.

        Parameters
        ----------
        resX, resY : ndarray
            Specify the resolutions with which to resize the raster. The larger `resX` is,
            the more longitudinally-stretched the raster becomes. The larger `resY` is, the
            more latitudinally-stretched the raster becomes.

        method : str or int; default: 'linear'
            The order of spline interpolation. Must be an integer in the range
            0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
            respectively.

        inplace : bool, default=False
            Choose to overwrite the data (the `self.data` attribute), latitude array 
            (`self.lats`) and longitude array (`self.lons`) currently attributed to the 
            `Raster` object. 

        return_array : bool, default False
            Return a `numpy.ndarray`, rather than a `Raster`.

        Returns
        -------
        Raster
            The resized grid. If `inplace` is set to `True`, this raster overwrites the
            one attributed to `data`.
        """
        # construct grid
        lons = np.linspace(self.extent[0], self.extent[1], resX)
        lats = np.linspace(self.extent[2], self.extent[3], resY)
        lonq, latq = np.meshgrid(lons, lats)

        data = self.interpolate(lonq, latq, method=method)
        if inplace:
            self._data = data
            self._lons = lons
            self._lats = lats
        if return_array:
            return data
        else:
            return Raster(data, self.plate_reconstruction, self.extent, self.time)


    def fill_NaNs(self, inplace=False, return_array=False):
        """Search raster for invalid ‘data’ cells containing NaN-type entries replaces them 
        with the value of their nearest valid data cells.

        Parameters
        ---------
        inplace : bool, default=False
            Choose whether to overwrite the grid currently held in the `data` attribute with
            the filled grid.

        return_array : bool, default False
            Return a `numpy.ndarray`, rather than a `Raster`.

        Returns
        --------
        Raster
            The resized grid. If `inplace` is set to `True`, this raster overwrites the
            one attributed to `data`.
        """
        data = fill_raster(self.data)
        if inplace:
            self._data = data
        if return_array:
            return data
        else:
            return Raster(data, self.plate_reconstruction, self.extent, self.time)


    def save_to_netcdf4(self, filename):
        """ Saves the grid attributed to the `Raster` object to the given `filename` (including
        the ".nc" extension) in netCDF4 format."""
        write_netcdf_grid(str(filename), self.data, self.extent)


    def reconstruct(
        self,
        time,
        fill_value=None,
        partitioning_features=None,
        threads=1,
        anchor_plate_id=0,
        inplace=False,
        return_array=False,
    ):
        """Reconstruct raster data to a given time.

        Parameters
        ----------
        time : float
            Time to which the data will be reconstructed.
        fill_value : float, int, str, or tuple, optional
            The value to be used for regions outside of the static polygons
            at `time`. By default (`fill_value=None`), this value will be
            determined based on the input.
        partitioning_features : sequence of Feature or str, optional
            The features used to partition the raster grid and assign plate
            IDs. By default, `self.plate_reconstruction.static_polygons`
            will be used, but alternatively any valid argument to
            `pygplates.FeaturesFunctionArgument` can be specified here.
        threads : int, default 1
            Number of threads to use for certain computationally heavy
            routines.
        anchor_plate_id : int, default 0
            ID of the anchored plate.
        inplace : bool, default False
            Perform the reconstruction in-place (replace the raster's data
            with the reconstructed data).
        return_array : bool, default False
            Return a `numpy.ndarray`, rather than a `Raster`.

        Returns
        -------
        Raster or np.ndarray
            The reconstructed grid. Areas for which no plate ID could be
            determined will be filled with `fill_value`.

        Raises
        ------
        TypeError
            If this `Raster` has no `plate_reconstruction` set.

        Notes
        -----
        For two-dimensional grids, `fill_value` should be a single
        number. The default value will be `np.nan` for float or
        complex types, the minimum value for integer types, and the
        maximum value for unsigned types.
        For RGB image grids, `fill_value` should be a 3-tuple RGB
        colour code or a matplotlib colour string. The default value
        will be black (0.0, 0.0, 0.0) or (0, 0, 0).
        For RGBA image grids, `fill_value` should be a 4-tuple RGBA
        colour code or a matplotlib colour string. The default fill
        value will be transparent black (0.0, 0.0, 0.0, 0.0) or
        (0, 0, 0, 0).
        """
        if time < 0.0:
            raise ValueError("Invalid time: {}".format(time))
        time = float(time)
        if self.plate_reconstruction is None:
            raise TypeError(
                "Cannot perform reconstruction - "
                + "`plate_reconstruction` has not been set"
            )
        if partitioning_features is None:
            partitioning_features = self.plate_reconstruction.static_polygons
        result =  reconstruct_grid(
            grid=self.data,
            partitioning_features=partitioning_features,
            rotation_model=self.plate_reconstruction.rotation_model,
            from_time=self.time,
            to_time=time,
            extent=self.extent,
            origin=self.origin,
            fill_value=fill_value,
            threads=threads,
            anchor_plate_id=anchor_plate_id,
        )

        if inplace:
            self.data = result
            self._time = time
            if return_array:
                return result
            return self

        if not return_array:
            result = type(self)(
                data=result,
                plate_reconstruction=self.plate_reconstruction,
                extent=self.extent,
                time=time,
                origin=self.origin,
            )
        return result


    def imshow(self, ax=None, projection=None, **kwargs):
        """Display raster data.

        A pre-existing matplotlib `Axes` instance is used if available,
        else a new one is created. The `origin` and `extent` of the image
        are determined automatically and should not be specified.

        Parameters
        ----------
        ax : matplotlib.axes.Axes, optional
            If specified, the image will be drawn within these axes.
        projection : cartopy.crs.Projection, optional
            The map projection to be used. If both `ax` and `projection`
            are specified, this will be checked against the `projection`
            attribute of `ax`, if it exists.
        **kwargs : dict, optional
            Any further keyword arguments are passed to
            `matplotlib.pyplot.imshow` or `matplotlib.axes.Axes.imshow`,
            where appropriate.

        Returns
        -------
        matplotlib.image.AxesImage

        Raises
        ------
        ValueError
            If `ax` and `projection` are both specified, but do not match
            (i.e. `ax.projection != projection`).
        """
        for kw in ("origin", "extent"):
            if kw in kwargs.keys():
                raise TypeError(
                    "imshow got an unexpected keyword argument: {}".format(kw)
                )
        if ax is None:
            existing_figure = len(plt.get_fignums()) > 0
            current_axes = plt.gca()
            if projection is None:
                ax = current_axes
            elif (
                isinstance(current_axes, _GeoAxes)
                and current_axes.projection == projection
            ):
                ax = current_axes
            else:
                if not existing_figure:
                    current_axes.remove()
                ax = plt.axes(projection=projection)
        elif projection is not None:
            # projection and ax both specified
            if isinstance(ax, _GeoAxes) and ax.projection == projection:
                pass  # projections match
            else:
                raise ValueError(
                    "Both `projection` and `ax` were specified, but"
                    + " `projection` does not match `ax.projection`"
                )

        if isinstance(ax, _GeoAxes) and "transform" not in kwargs.keys():
            kwargs["transform"] = _PlateCarree()
        extent = self.extent
        if self.origin == "upper":
            extent = (
                extent[0],
                extent[1],
                extent[3],
                extent[2],
            )
        im = ax.imshow(self.data, origin=self.origin, extent=extent, **kwargs)
        return im

    plot = imshow


    def rotate_reference_frames(
        self,
        grid_spacing_degrees, 
        reconstruction_time,
        from_rotation_features_or_model,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        to_rotation_features_or_model,    # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        from_rotation_reference_plate=0,
        to_rotation_reference_plate=0,
        non_reference_plate=701,
        output_name=None
    ):
        """Rotate a grid defined in one plate model reference frame 
        within a gplately.Raster object to another plate 
        reconstruction model reference frame.

        Parameters
        ----------
        grid_spacing_degrees : float
            The spacing (in degrees) for the output rotated grid.
        reconstruction_time : float
            The time at which to rotate the input grid.
        from_rotation_features_or_model : str, list of str, or instance of pygplates.RotationModel
            A filename, or a list of filenames, or a pyGPlates 
            RotationModel object that defines the rotation model
            that the input grid is currently associated with.
        to_rotation_features_or_model : str, list of str, or instance of pygplates.RotationModel
            A filename, or a list of filenames, or a pyGPlates 
            RotationModel object that defines the rotation model
            that the input grid shall be rotated with.
        from_rotation_reference_plate : int, default = 0
            The current reference plate for the plate model the grid
            is defined in. Defaults to the anchor plate 0.
        to_rotation_reference_plate : int, default = 0
            The desired reference plate for the plate model the grid
            is being rotated to. Defaults to the anchor plate 0.
        non_reference_plate : int, default = 701
            An arbitrary placeholder reference frame with which 
            to define the "from" and "to" reference frames.
        output_name : str, default None
            If passed, the rotated grid is saved as a netCDF grid to this filename.

        Returns
        -------
        gplately.Raster()
            An instance of the gplately.Raster object containing the rotated grid.
        """

        input_positions = []

        # Create the pygplates.FiniteRotation that rotates 
        # between the two reference frames.
        from_rotation_model = pygplates.RotationModel(
            from_rotation_features_or_model
        )
        to_rotation_model = pygplates.RotationModel(
            to_rotation_features_or_model
        )
        from_rotation = from_rotation_model.get_rotation(
            reconstruction_time, 
            non_reference_plate, 
            anchor_plate_id=from_rotation_reference_plate
        )
        to_rotation = to_rotation_model.get_rotation(
            reconstruction_time, 
            non_reference_plate, 
            anchor_plate_id=to_rotation_reference_plate
        )
        reference_frame_conversion_rotation = to_rotation * from_rotation.get_inverse()


        # Resize the input grid to the specified output resolution before rotating
        resX = _deg2pixels(grid_spacing_degrees, self.extent[0], self.extent[1])
        resY = _deg2pixels(grid_spacing_degrees, self.extent[2], self.extent[3])
        resized_input_grid = self.resize(resX, resY, inplace=False)

        # Get the flattened lons, lats
        llons, llats = np.meshgrid(resized_input_grid.lons, resized_input_grid.lats)
        llons = llons.ravel()
        llats = llats.ravel()

        # Convert lon-lat points of Raster grid to pyGPlates points
        input_points = pygplates.MultiPointOnSphere((lat, lon) for lon, lat in zip(llons, llats))
        # Get grid values of the resized Raster object
        values = np.array(resized_input_grid.data).ravel()

        # Rotate grid nodes to the other reference frame
        output_points = reference_frame_conversion_rotation * input_points

        # Assemble rotated points with grid values.
        out_lon = np.empty_like(llons)
        out_lat = np.empty_like(llats)
        zdata = np.empty_like(values)
        for i, point in enumerate(output_points):
            out_lat[i], out_lon[i] = point.to_lat_lon()
            zdata[i] = values[i]

        # Create a regular grid on which to interpolate lats, lons and zdata
        # Use the extent of the original Raster object
        extent_globe = self.extent

        resX = int(np.floor((extent_globe[1] - extent_globe[0]) / grid_spacing_degrees)) + 1
        resY = int(np.floor((extent_globe[3] - extent_globe[2]) / grid_spacing_degrees)) + 1

        grid_lon = np.linspace(extent_globe[0], extent_globe[1], resX)
        grid_lat = np.linspace(extent_globe[2], extent_globe[3], resY)

        X, Y = np.meshgrid(grid_lon, grid_lat)

        # Interpolate lons, lats and zvals over a regular grid using nearest
        # neighbour interpolation
        Z = griddata_sphere((out_lon, out_lat), zdata, (X, Y), method='nearest')

        # Write output grid to netCDF if requested.
        if output_name:
            write_netcdf_grid(output_name, Z, extent=extent_globe)

        return Raster(data=Z)


    def __array__(self):
        return np.array(self.data)


    def __add__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data + other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data + other
        new_raster.data = new_data
        return new_raster


    def __radd__(self, other):
        return self + other


    def __sub__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data - other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data - other
        new_raster.data = new_data
        return new_raster


    def __rsub__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return other.data - self.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = other - self.data
        new_raster.data = new_data
        return new_raster


    def __mul__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data * other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data * other
        new_raster.data = new_data
        return new_raster


    def __rmul__(self, other):
        return self * other


    def __truediv__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data / other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data / other
        new_raster.data = new_data
        return new_raster


    def __rtruediv__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return other.data / self.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = other / self.data
        new_raster.data = new_data
        return new_raster


    def __floordiv__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data // other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data // other
        new_raster.data = new_data
        return new_raster


    def __rfloordiv__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return other.data // self.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = other // self.data
        new_raster.data = new_data
        return new_raster


    def __mod__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data % other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data % other
        new_raster.data = new_data
        return new_raster


    def __rmod__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return other.data % self.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = other % self.data
        new_raster.data = new_data
        return new_raster


    def __pow__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return self.data ** other.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = self.data ** other
        new_raster.data = new_data
        return new_raster


    def __rpow__(self, other):
        if isinstance(other, Raster):
            # Return array, since we don't know which Raster
            # to take properties from
            return other.data ** self.data

        # Return Raster with new data
        new_raster = self.copy()
        new_data = other ** self.data
        new_raster.data = new_data
        return new_raster

Instance variables

var data

The object's raster data.

Can be modified.

Expand source code
@property
def data(self):
    """The object's raster data.

    Can be modified.
    """
    return self._data
var dtype

The data type of the array.

Expand source code
@property
def dtype(self):
    """The data type of the array."""
    return self.data.dtype
var extent

The spatial extent (x0, x1, y0, y1) of the data.

If y0 < y1, the origin is the lower-left corner; else the upper-left.

Expand source code
@property
def extent(self):
    """The spatial extent (x0, x1, y0, y1) of the data.

    If y0 < y1, the origin is the lower-left corner; else the upper-left.
    """
    return (
        float(self.lons[0]),
        float(self.lons[-1]),
        float(self.lats[0]),
        float(self.lats[-1]),
    )
var filename

The filename of the raster file used to create the object.

If a NumPy array was used instead, this attribute is None.

Expand source code
@property
def filename(self):
    """The filename of the raster file used to create the object.

    If a NumPy array was used instead, this attribute is `None`.
    """
    return self._filename
var lats

The y-coordinates of the raster data.

Can be modified.

Expand source code
@property
def lats(self):
    """The y-coordinates of the raster data.

    Can be modified.
    """
    return self._lats
var lons

The x-coordinates of the raster data.

Can be modified.

Expand source code
@property
def lons(self):
    """The x-coordinates of the raster data.

    Can be modified.
    """
    return self._lons
var ndim

The number of dimensions in the array.

Expand source code
@property
def ndim(self):
    """The number of dimensions in the array."""
    return np.ndim(self.data)
var origin

The origin of the data array, used for e.g. plotting.

Expand source code
@property
def origin(self):
    """The origin of the data array, used for e.g. plotting."""
    if self.lats[0] < self.lats[-1]:
        return "lower"
    else:
        return "upper"
var plate_reconstruction

The PlateReconstruction object to be used for raster reconstruction.

Expand source code
@property
def plate_reconstruction(self):
    """The `PlateReconstruction` object to be used for raster
    reconstruction.
    """
    return self._plate_reconstruction
var shape

The shape of the data array.

Expand source code
@property
def shape(self):
    """The shape of the data array."""
    return np.shape(self.data)
var size

The size of the data array.

Expand source code
@property
def size(self):
    """The size of the data array."""
    return np.size(self.data)
var time

The time step represented by the raster data.

Expand source code
@property
def time(self):
    """The time step represented by the raster data."""
    return self._time

Methods

def copy(self)

Returns a copy of the Raster

Returns

Raster
A copy of the current Raster object
Expand source code
def copy(self):
    """ Returns a copy of the Raster
    
    Returns
    -------
    Raster
        A copy of the current Raster object
    """
    return Raster(self.data.copy(), self.plate_reconstruction, self.extent, self.time)
def fill_NaNs(self, inplace=False, return_array=False)

Search raster for invalid ‘data’ cells containing NaN-type entries replaces them with the value of their nearest valid data cells.

Parameters

inplace : bool, default=False
Choose whether to overwrite the grid currently held in the data attribute with the filled grid.
return_array : bool, default False
Return a numpy.ndarray, rather than a Raster.

Returns

Raster
The resized grid. If inplace is set to True, this raster overwrites the one attributed to data.
Expand source code
def fill_NaNs(self, inplace=False, return_array=False):
    """Search raster for invalid ‘data’ cells containing NaN-type entries replaces them 
    with the value of their nearest valid data cells.

    Parameters
    ---------
    inplace : bool, default=False
        Choose whether to overwrite the grid currently held in the `data` attribute with
        the filled grid.

    return_array : bool, default False
        Return a `numpy.ndarray`, rather than a `Raster`.

    Returns
    --------
    Raster
        The resized grid. If `inplace` is set to `True`, this raster overwrites the
        one attributed to `data`.
    """
    data = fill_raster(self.data)
    if inplace:
        self._data = data
    if return_array:
        return data
    else:
        return Raster(data, self.plate_reconstruction, self.extent, self.time)
def imshow(self, ax=None, projection=None, **kwargs)

Display raster data.

A pre-existing matplotlib Axes instance is used if available, else a new one is created. The origin and extent of the image are determined automatically and should not be specified.

Parameters

ax : matplotlib.axes.Axes, optional
If specified, the image will be drawn within these axes.
projection : cartopy.crs.Projection, optional
The map projection to be used. If both ax and projection are specified, this will be checked against the projection attribute of ax, if it exists.
**kwargs : dict, optional
Any further keyword arguments are passed to matplotlib.pyplot.imshow or matplotlib.axes.Axes.imshow, where appropriate.

Returns

matplotlib.image.AxesImage
 

Raises

ValueError
If ax and projection are both specified, but do not match (i.e. ax.projection != projection).
Expand source code
def imshow(self, ax=None, projection=None, **kwargs):
    """Display raster data.

    A pre-existing matplotlib `Axes` instance is used if available,
    else a new one is created. The `origin` and `extent` of the image
    are determined automatically and should not be specified.

    Parameters
    ----------
    ax : matplotlib.axes.Axes, optional
        If specified, the image will be drawn within these axes.
    projection : cartopy.crs.Projection, optional
        The map projection to be used. If both `ax` and `projection`
        are specified, this will be checked against the `projection`
        attribute of `ax`, if it exists.
    **kwargs : dict, optional
        Any further keyword arguments are passed to
        `matplotlib.pyplot.imshow` or `matplotlib.axes.Axes.imshow`,
        where appropriate.

    Returns
    -------
    matplotlib.image.AxesImage

    Raises
    ------
    ValueError
        If `ax` and `projection` are both specified, but do not match
        (i.e. `ax.projection != projection`).
    """
    for kw in ("origin", "extent"):
        if kw in kwargs.keys():
            raise TypeError(
                "imshow got an unexpected keyword argument: {}".format(kw)
            )
    if ax is None:
        existing_figure = len(plt.get_fignums()) > 0
        current_axes = plt.gca()
        if projection is None:
            ax = current_axes
        elif (
            isinstance(current_axes, _GeoAxes)
            and current_axes.projection == projection
        ):
            ax = current_axes
        else:
            if not existing_figure:
                current_axes.remove()
            ax = plt.axes(projection=projection)
    elif projection is not None:
        # projection and ax both specified
        if isinstance(ax, _GeoAxes) and ax.projection == projection:
            pass  # projections match
        else:
            raise ValueError(
                "Both `projection` and `ax` were specified, but"
                + " `projection` does not match `ax.projection`"
            )

    if isinstance(ax, _GeoAxes) and "transform" not in kwargs.keys():
        kwargs["transform"] = _PlateCarree()
    extent = self.extent
    if self.origin == "upper":
        extent = (
            extent[0],
            extent[1],
            extent[3],
            extent[2],
        )
    im = ax.imshow(self.data, origin=self.origin, extent=extent, **kwargs)
    return im
def interpolate(self, lons, lats, method='linear', return_indices=False)

Interpolate a set of point data onto the gridded data provided to the Raster object.

Parameters

lons, lats : array_like
The longitudes and latitudes of the points to interpolate onto the gridded data. Must be broadcastable to a common shape.
method : str or int; default: 'linear'
The order of spline interpolation. Must be an integer in the range 0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3, respectively.
return_indices : bool, default=False
Whether to return the row and column indices of the nearest grid points.

Returns

numpy.ndarray
The values interpolated at the input points.
indices : 2-tuple of numpy.ndarray
The i- and j-indices of the nearest grid points to the input points, only present if return_indices=True.

Raises

ValueError
If an invalid method is provided.
RuntimeWarning
If lats contains any invalid values outside of the interval [-90, 90]. Invalid values will be clipped to this interval.

Notes

If return_indices is set to True, the nearest array indices are returned as a tuple of arrays, in (i, j) or (lat, lon) format.

An example output:

# The first array holds the rows of the raster where point data spatially falls near.
# The second array holds the columns of the raster where point data spatially falls near.
sampled_indices = (array([1019, 1019, 1019, ..., 1086, 1086, 1087]), array([2237, 2237, 2237, ...,  983,  983,  983]))
Expand source code
def interpolate(
    self,
    lons,
    lats,
    method="linear",
    return_indices=False,
):
    """Interpolate a set of point data onto the gridded data provided
    to the `Raster` object.

    Parameters
    ----------
    lons, lats : array_like
        The longitudes and latitudes of the points to interpolate onto the
        gridded data. Must be broadcastable to a common shape.
    method : str or int; default: 'linear'
        The order of spline interpolation. Must be an integer in the range
        0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
        respectively.
    return_indices : bool, default=False
        Whether to return the row and column indices of the nearest grid
        points.

    Returns
    -------
    numpy.ndarray
        The values interpolated at the input points.
    indices : 2-tuple of numpy.ndarray
        The i- and j-indices of the nearest grid points to the input
        points, only present if `return_indices=True`.

    Raises
    ------
    ValueError
        If an invalid `method` is provided.
    RuntimeWarning
        If `lats` contains any invalid values outside of the interval
        [-90, 90]. Invalid values will be clipped to this interval.

    Notes
    -----
    If `return_indices` is set to `True`, the nearest array indices
    are returned as a tuple of arrays, in (i, j) or (lat, lon) format.

    An example output:

        # The first array holds the rows of the raster where point data spatially falls near.
        # The second array holds the columns of the raster where point data spatially falls near.
        sampled_indices = (array([1019, 1019, 1019, ..., 1086, 1086, 1087]), array([2237, 2237, 2237, ...,  983,  983,  983]))
    """
    return sample_grid(
        lon=lons,
        lat=lats,
        grid=self,
        method=method,
        return_indices=return_indices,
    )
def plot(self, ax=None, projection=None, **kwargs)

Display raster data.

A pre-existing matplotlib Axes instance is used if available, else a new one is created. The origin and extent of the image are determined automatically and should not be specified.

Parameters

ax : matplotlib.axes.Axes, optional
If specified, the image will be drawn within these axes.
projection : cartopy.crs.Projection, optional
The map projection to be used. If both ax and projection are specified, this will be checked against the projection attribute of ax, if it exists.
**kwargs : dict, optional
Any further keyword arguments are passed to matplotlib.pyplot.imshow or matplotlib.axes.Axes.imshow, where appropriate.

Returns

matplotlib.image.AxesImage
 

Raises

ValueError
If ax and projection are both specified, but do not match (i.e. ax.projection != projection).
Expand source code
def imshow(self, ax=None, projection=None, **kwargs):
    """Display raster data.

    A pre-existing matplotlib `Axes` instance is used if available,
    else a new one is created. The `origin` and `extent` of the image
    are determined automatically and should not be specified.

    Parameters
    ----------
    ax : matplotlib.axes.Axes, optional
        If specified, the image will be drawn within these axes.
    projection : cartopy.crs.Projection, optional
        The map projection to be used. If both `ax` and `projection`
        are specified, this will be checked against the `projection`
        attribute of `ax`, if it exists.
    **kwargs : dict, optional
        Any further keyword arguments are passed to
        `matplotlib.pyplot.imshow` or `matplotlib.axes.Axes.imshow`,
        where appropriate.

    Returns
    -------
    matplotlib.image.AxesImage

    Raises
    ------
    ValueError
        If `ax` and `projection` are both specified, but do not match
        (i.e. `ax.projection != projection`).
    """
    for kw in ("origin", "extent"):
        if kw in kwargs.keys():
            raise TypeError(
                "imshow got an unexpected keyword argument: {}".format(kw)
            )
    if ax is None:
        existing_figure = len(plt.get_fignums()) > 0
        current_axes = plt.gca()
        if projection is None:
            ax = current_axes
        elif (
            isinstance(current_axes, _GeoAxes)
            and current_axes.projection == projection
        ):
            ax = current_axes
        else:
            if not existing_figure:
                current_axes.remove()
            ax = plt.axes(projection=projection)
    elif projection is not None:
        # projection and ax both specified
        if isinstance(ax, _GeoAxes) and ax.projection == projection:
            pass  # projections match
        else:
            raise ValueError(
                "Both `projection` and `ax` were specified, but"
                + " `projection` does not match `ax.projection`"
            )

    if isinstance(ax, _GeoAxes) and "transform" not in kwargs.keys():
        kwargs["transform"] = _PlateCarree()
    extent = self.extent
    if self.origin == "upper":
        extent = (
            extent[0],
            extent[1],
            extent[3],
            extent[2],
        )
    im = ax.imshow(self.data, origin=self.origin, extent=extent, **kwargs)
    return im
def reconstruct(self, time, fill_value=None, partitioning_features=None, threads=1, anchor_plate_id=0, inplace=False, return_array=False)

Reconstruct raster data to a given time.

Parameters

time : float
Time to which the data will be reconstructed.
fill_value : float, int, str, or tuple, optional
The value to be used for regions outside of the static polygons at time. By default (fill_value=None), this value will be determined based on the input.
partitioning_features : sequence of Feature or str, optional
The features used to partition the raster grid and assign plate IDs. By default, self.plate_reconstruction.static_polygons will be used, but alternatively any valid argument to pygplates.FeaturesFunctionArgument can be specified here.
threads : int, default 1
Number of threads to use for certain computationally heavy routines.
anchor_plate_id : int, default 0
ID of the anchored plate.
inplace : bool, default False
Perform the reconstruction in-place (replace the raster's data with the reconstructed data).
return_array : bool, default False
Return a numpy.ndarray, rather than a Raster.

Returns

Raster or np.ndarray
The reconstructed grid. Areas for which no plate ID could be determined will be filled with fill_value.

Raises

TypeError
If this Raster has no plate_reconstruction set.

Notes

For two-dimensional grids, fill_value should be a single number. The default value will be np.nan for float or complex types, the minimum value for integer types, and the maximum value for unsigned types. For RGB image grids, fill_value should be a 3-tuple RGB colour code or a matplotlib colour string. The default value will be black (0.0, 0.0, 0.0) or (0, 0, 0). For RGBA image grids, fill_value should be a 4-tuple RGBA colour code or a matplotlib colour string. The default fill value will be transparent black (0.0, 0.0, 0.0, 0.0) or (0, 0, 0, 0).

Expand source code
def reconstruct(
    self,
    time,
    fill_value=None,
    partitioning_features=None,
    threads=1,
    anchor_plate_id=0,
    inplace=False,
    return_array=False,
):
    """Reconstruct raster data to a given time.

    Parameters
    ----------
    time : float
        Time to which the data will be reconstructed.
    fill_value : float, int, str, or tuple, optional
        The value to be used for regions outside of the static polygons
        at `time`. By default (`fill_value=None`), this value will be
        determined based on the input.
    partitioning_features : sequence of Feature or str, optional
        The features used to partition the raster grid and assign plate
        IDs. By default, `self.plate_reconstruction.static_polygons`
        will be used, but alternatively any valid argument to
        `pygplates.FeaturesFunctionArgument` can be specified here.
    threads : int, default 1
        Number of threads to use for certain computationally heavy
        routines.
    anchor_plate_id : int, default 0
        ID of the anchored plate.
    inplace : bool, default False
        Perform the reconstruction in-place (replace the raster's data
        with the reconstructed data).
    return_array : bool, default False
        Return a `numpy.ndarray`, rather than a `Raster`.

    Returns
    -------
    Raster or np.ndarray
        The reconstructed grid. Areas for which no plate ID could be
        determined will be filled with `fill_value`.

    Raises
    ------
    TypeError
        If this `Raster` has no `plate_reconstruction` set.

    Notes
    -----
    For two-dimensional grids, `fill_value` should be a single
    number. The default value will be `np.nan` for float or
    complex types, the minimum value for integer types, and the
    maximum value for unsigned types.
    For RGB image grids, `fill_value` should be a 3-tuple RGB
    colour code or a matplotlib colour string. The default value
    will be black (0.0, 0.0, 0.0) or (0, 0, 0).
    For RGBA image grids, `fill_value` should be a 4-tuple RGBA
    colour code or a matplotlib colour string. The default fill
    value will be transparent black (0.0, 0.0, 0.0, 0.0) or
    (0, 0, 0, 0).
    """
    if time < 0.0:
        raise ValueError("Invalid time: {}".format(time))
    time = float(time)
    if self.plate_reconstruction is None:
        raise TypeError(
            "Cannot perform reconstruction - "
            + "`plate_reconstruction` has not been set"
        )
    if partitioning_features is None:
        partitioning_features = self.plate_reconstruction.static_polygons
    result =  reconstruct_grid(
        grid=self.data,
        partitioning_features=partitioning_features,
        rotation_model=self.plate_reconstruction.rotation_model,
        from_time=self.time,
        to_time=time,
        extent=self.extent,
        origin=self.origin,
        fill_value=fill_value,
        threads=threads,
        anchor_plate_id=anchor_plate_id,
    )

    if inplace:
        self.data = result
        self._time = time
        if return_array:
            return result
        return self

    if not return_array:
        result = type(self)(
            data=result,
            plate_reconstruction=self.plate_reconstruction,
            extent=self.extent,
            time=time,
            origin=self.origin,
        )
    return result
def resample(self, spacingX, spacingY, method='linear', inplace=False)

Resample the grid passed to the Raster object with a new spacingX and spacingY using linear interpolation.

Notes

Ultimately, resample changes the lat-lon resolution of the gridded data. The larger the x and y spacings given are, the larger the pixellation of raster data.

resample creates new latitude and longitude arrays with specified spacings in the X and Y directions (spacingX and spacingY). These arrays are linearly interpolated into a new raster. If inplace is set to True, the respaced latitude array, longitude array and raster will inplace the ones currently attributed to the Raster object.

Parameters

spacingX, spacingY : ndarray
Specify the spacing in the X and Y directions with which to resample. The larger spacingX and spacingY are, the larger the raster pixels become (less resolved). Note: to keep the size of the raster consistent, set spacingX = spacingY; otherwise, if for example spacingX > spacingY, the raster will appear stretched longitudinally.
method : str or int; default: 'linear'
The order of spline interpolation. Must be an integer in the range 0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3, respectively.
inplace : bool, default=False
Choose to overwrite the data (the self.data attribute), latitude array (self.lats) and longitude array (self.lons) currently attributed to the Raster object.

Returns

Raster
The resampled grid. If inplace is set to True, this raster overwrites the one attributed to data.
Expand source code
def resample(self, spacingX, spacingY, method="linear", inplace=False):
    """Resample the `grid` passed to the `Raster` object with a new `spacingX` and 
    `spacingY` using linear interpolation.

    Notes
    -----
    Ultimately, `resample` changes the lat-lon resolution of the gridded data. The
    larger the x and y spacings given are, the larger the pixellation of raster data. 

    `resample` creates new latitude and longitude arrays with specified spacings in the
    X and Y directions (`spacingX` and `spacingY`). These arrays are linearly interpolated 
    into a new raster. If `inplace` is set to `True`, the respaced latitude array, longitude 
    array and raster will inplace the ones currently attributed to the `Raster` object.

    Parameters
    ----------
    spacingX, spacingY : ndarray
        Specify the spacing in the X and Y directions with which to resample. The larger 
        `spacingX` and `spacingY` are, the larger the raster pixels become (less resolved).
        Note: to keep the size of the raster consistent, set `spacingX = spacingY`; 
        otherwise, if for example `spacingX > spacingY`, the raster will appear stretched 
        longitudinally. 

    method : str or int; default: 'linear'
        The order of spline interpolation. Must be an integer in the range
        0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
        respectively.

    inplace : bool, default=False
        Choose to overwrite the data (the `self.data` attribute), latitude array 
        (`self.lats`) and longitude array (`self.lons`) currently attributed to the 
        `Raster` object. 

    Returns
    -------
    Raster
        The resampled grid. If `inplace` is set to `True`, this raster overwrites the
        one attributed to `data`.
    """
    spacingX = np.abs(spacingX)
    spacingY = np.abs(spacingY)
    if self.origin == "upper":
        spacingY *= -1.0

    lons = np.arange(self.extent[0], self.extent[1]+spacingX, spacingX)
    lats = np.arange(self.extent[2], self.extent[3]+spacingY, spacingY)
    lonq, latq = np.meshgrid(lons, lats)

    data = self.interpolate(lonq, latq, method=method)
    if inplace:
        self._data = data
        self._lons = lons
        self._lats = lats
    else:
        return Raster(data, self.plate_reconstruction, self.extent, self.time)
def resize(self, resX, resY, inplace=False, method='linear', return_array=False)

Resize the grid passed to the Raster object with a new x and y resolution (resX and resY) using linear interpolation.

Notes

Ultimately, resize "stretches" a raster in the x and y directions. The larger the resolutions in x and y, the more stretched the raster appears in x and y.

It creates new latitude and longitude arrays with specific resolutions in the X and Y directions (resX and resY). These arrays are linearly interpolated into a new raster. If inplace is set to True, the resized latitude, longitude arrays and raster will inplace the ones currently attributed to the Raster object.

Parameters

resX, resY : ndarray
Specify the resolutions with which to resize the raster. The larger resX is, the more longitudinally-stretched the raster becomes. The larger resY is, the more latitudinally-stretched the raster becomes.
method : str or int; default: 'linear'
The order of spline interpolation. Must be an integer in the range 0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3, respectively.
inplace : bool, default=False
Choose to overwrite the data (the self.data attribute), latitude array (self.lats) and longitude array (self.lons) currently attributed to the Raster object.
return_array : bool, default False
Return a numpy.ndarray, rather than a Raster.

Returns

Raster
The resized grid. If inplace is set to True, this raster overwrites the one attributed to data.
Expand source code
def resize(self, resX, resY, inplace=False, method="linear", return_array=False):
    """Resize the grid passed to the `Raster` object with a new x and y resolution 
    (`resX` and `resY`) using linear interpolation. 

    Notes
    -----
    Ultimately, `resize` "stretches" a raster in the x and y directions. The larger
    the resolutions in x and y, the more stretched the raster appears in x and y.

    It creates new latitude and longitude arrays with specific resolutions in 
    the X and Y directions (`resX` and `resY`). These arrays are linearly interpolated
    into a new raster. If `inplace` is set to `True`, the resized latitude, longitude 
    arrays and raster will inplace the ones currently attributed to the `Raster` object.

    Parameters
    ----------
    resX, resY : ndarray
        Specify the resolutions with which to resize the raster. The larger `resX` is,
        the more longitudinally-stretched the raster becomes. The larger `resY` is, the
        more latitudinally-stretched the raster becomes.

    method : str or int; default: 'linear'
        The order of spline interpolation. Must be an integer in the range
        0-5. 'nearest', 'linear', and 'cubic' are aliases for 0, 1, and 3,
        respectively.

    inplace : bool, default=False
        Choose to overwrite the data (the `self.data` attribute), latitude array 
        (`self.lats`) and longitude array (`self.lons`) currently attributed to the 
        `Raster` object. 

    return_array : bool, default False
        Return a `numpy.ndarray`, rather than a `Raster`.

    Returns
    -------
    Raster
        The resized grid. If `inplace` is set to `True`, this raster overwrites the
        one attributed to `data`.
    """
    # construct grid
    lons = np.linspace(self.extent[0], self.extent[1], resX)
    lats = np.linspace(self.extent[2], self.extent[3], resY)
    lonq, latq = np.meshgrid(lons, lats)

    data = self.interpolate(lonq, latq, method=method)
    if inplace:
        self._data = data
        self._lons = lons
        self._lats = lats
    if return_array:
        return data
    else:
        return Raster(data, self.plate_reconstruction, self.extent, self.time)
def rotate_reference_frames(self, grid_spacing_degrees, reconstruction_time, from_rotation_features_or_model, to_rotation_features_or_model, from_rotation_reference_plate=0, to_rotation_reference_plate=0, non_reference_plate=701, output_name=None)

Rotate a grid defined in one plate model reference frame within a gplately.Raster object to another plate reconstruction model reference frame.

Parameters

grid_spacing_degrees : float
The spacing (in degrees) for the output rotated grid.
reconstruction_time : float
The time at which to rotate the input grid.
from_rotation_features_or_model : str, list of str, or instance of RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid is currently associated with.
to_rotation_features_or_model : str, list of str, or instance of RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid shall be rotated with.
from_rotation_reference_plate : int, default = 0
The current reference plate for the plate model the grid is defined in. Defaults to the anchor plate 0.
to_rotation_reference_plate : int, default = 0
The desired reference plate for the plate model the grid is being rotated to. Defaults to the anchor plate 0.
non_reference_plate : int, default = 701
An arbitrary placeholder reference frame with which to define the "from" and "to" reference frames.
output_name : str, default None
If passed, the rotated grid is saved as a netCDF grid to this filename.

Returns

Raster
An instance of the gplately.Raster object containing the rotated grid.
Expand source code
def rotate_reference_frames(
    self,
    grid_spacing_degrees, 
    reconstruction_time,
    from_rotation_features_or_model,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
    to_rotation_features_or_model,    # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
    from_rotation_reference_plate=0,
    to_rotation_reference_plate=0,
    non_reference_plate=701,
    output_name=None
):
    """Rotate a grid defined in one plate model reference frame 
    within a gplately.Raster object to another plate 
    reconstruction model reference frame.

    Parameters
    ----------
    grid_spacing_degrees : float
        The spacing (in degrees) for the output rotated grid.
    reconstruction_time : float
        The time at which to rotate the input grid.
    from_rotation_features_or_model : str, list of str, or instance of pygplates.RotationModel
        A filename, or a list of filenames, or a pyGPlates 
        RotationModel object that defines the rotation model
        that the input grid is currently associated with.
    to_rotation_features_or_model : str, list of str, or instance of pygplates.RotationModel
        A filename, or a list of filenames, or a pyGPlates 
        RotationModel object that defines the rotation model
        that the input grid shall be rotated with.
    from_rotation_reference_plate : int, default = 0
        The current reference plate for the plate model the grid
        is defined in. Defaults to the anchor plate 0.
    to_rotation_reference_plate : int, default = 0
        The desired reference plate for the plate model the grid
        is being rotated to. Defaults to the anchor plate 0.
    non_reference_plate : int, default = 701
        An arbitrary placeholder reference frame with which 
        to define the "from" and "to" reference frames.
    output_name : str, default None
        If passed, the rotated grid is saved as a netCDF grid to this filename.

    Returns
    -------
    gplately.Raster()
        An instance of the gplately.Raster object containing the rotated grid.
    """

    input_positions = []

    # Create the pygplates.FiniteRotation that rotates 
    # between the two reference frames.
    from_rotation_model = pygplates.RotationModel(
        from_rotation_features_or_model
    )
    to_rotation_model = pygplates.RotationModel(
        to_rotation_features_or_model
    )
    from_rotation = from_rotation_model.get_rotation(
        reconstruction_time, 
        non_reference_plate, 
        anchor_plate_id=from_rotation_reference_plate
    )
    to_rotation = to_rotation_model.get_rotation(
        reconstruction_time, 
        non_reference_plate, 
        anchor_plate_id=to_rotation_reference_plate
    )
    reference_frame_conversion_rotation = to_rotation * from_rotation.get_inverse()


    # Resize the input grid to the specified output resolution before rotating
    resX = _deg2pixels(grid_spacing_degrees, self.extent[0], self.extent[1])
    resY = _deg2pixels(grid_spacing_degrees, self.extent[2], self.extent[3])
    resized_input_grid = self.resize(resX, resY, inplace=False)

    # Get the flattened lons, lats
    llons, llats = np.meshgrid(resized_input_grid.lons, resized_input_grid.lats)
    llons = llons.ravel()
    llats = llats.ravel()

    # Convert lon-lat points of Raster grid to pyGPlates points
    input_points = pygplates.MultiPointOnSphere((lat, lon) for lon, lat in zip(llons, llats))
    # Get grid values of the resized Raster object
    values = np.array(resized_input_grid.data).ravel()

    # Rotate grid nodes to the other reference frame
    output_points = reference_frame_conversion_rotation * input_points

    # Assemble rotated points with grid values.
    out_lon = np.empty_like(llons)
    out_lat = np.empty_like(llats)
    zdata = np.empty_like(values)
    for i, point in enumerate(output_points):
        out_lat[i], out_lon[i] = point.to_lat_lon()
        zdata[i] = values[i]

    # Create a regular grid on which to interpolate lats, lons and zdata
    # Use the extent of the original Raster object
    extent_globe = self.extent

    resX = int(np.floor((extent_globe[1] - extent_globe[0]) / grid_spacing_degrees)) + 1
    resY = int(np.floor((extent_globe[3] - extent_globe[2]) / grid_spacing_degrees)) + 1

    grid_lon = np.linspace(extent_globe[0], extent_globe[1], resX)
    grid_lat = np.linspace(extent_globe[2], extent_globe[3], resY)

    X, Y = np.meshgrid(grid_lon, grid_lat)

    # Interpolate lons, lats and zvals over a regular grid using nearest
    # neighbour interpolation
    Z = griddata_sphere((out_lon, out_lat), zdata, (X, Y), method='nearest')

    # Write output grid to netCDF if requested.
    if output_name:
        write_netcdf_grid(output_name, Z, extent=extent_globe)

    return Raster(data=Z)
def save_to_netcdf4(self, filename)

Saves the grid attributed to the Raster object to the given filename (including the ".nc" extension) in netCDF4 format.

Expand source code
def save_to_netcdf4(self, filename):
    """ Saves the grid attributed to the `Raster` object to the given `filename` (including
    the ".nc" extension) in netCDF4 format."""
    write_netcdf_grid(str(filename), self.data, self.extent)
class SeafloorGrid (PlateReconstruction_object, PlotTopologies_object, max_time, min_time, ridge_time_step, save_directory='agegrids', file_collection=None, refinement_levels=5, ridge_sampling=0.5, extent=(-180, 180, -90, 90), grid_spacing=None, subduction_collision_parameters=(5.0, 10.0), initial_ocean_mean_spreading_rate=75.0, resume_from_checkpoints=False, zval_names=('SPREADING_RATE',), continent_mask_filename=None)

A class to generate grids that track data atop global ocean basin points (which emerge from mid ocean ridges) through geological time.

Parameters

PlateReconstruction_object : instance of <gplately.PlateReconstruction>
A GPlately PlateReconstruction object with a and a containing topology features.
PlotTopologies_object : instance of <gplately.PlotTopologies>
A GPlately PlotTopologies object with a continental polygon or COB terrane polygon file to mask grids with.
max_time : float
The maximum time for age gridding.
min_time : float
The minimum time for age gridding.
ridge_time_step : float
The delta time for resolving ridges (and thus age gridding).
save_directory : str, default None'
The top-level directory to save all outputs to.
file_collection : str, default None
A string to identify the plate model used (will be automated later).
refinement_levels : int, default 5
Control the number of points in the icosahedral mesh (higher integer means higher resolution of continent masks).
ridge_sampling : float, default 0.5
Spatial resolution (in degrees) at which points that emerge from ridges are tessellated.
extent : list of float or int, default [-180.,180.,-90.,90.]
A list containing the mininum longitude, maximum longitude, minimum latitude and maximum latitude extents for all masking and final grids.
grid_spacing : float, default None
The degree spacing/interval with which to space grid points across all masking and final grids. If grid_spacing is provided, all grids will use it. If not, grid_spacing defaults to 0.1.
subduction_collision_parameters : len-2 tuple of float, default (5.0, 10.0)
A 2-tuple of (threshold velocity delta in kms/my, threshold distance to boundary per My in kms/my)
initial_ocean_mean_spreading_rate : float, default 75.
A spreading rate to uniformly allocate to points that define the initial ocean
basin. These points will have inaccurate ages, but most of them will be phased
out after points with plate-model prescribed ages emerge from ridges and spread
to push them towards collision boundaries (where they are deleted).
resume_from_checkpoints : bool, default False
If set to True, and the gridding preparation stage (continental masking and/or ridge seed building) is interrupted, SeafloorGrids will resume gridding preparation from the last successful preparation time. If set to False, SeafloorGrids will automatically overwrite all files in save_directory if re-run after interruption, or normally re-run, thus beginning gridding preparation from scratch. False will be useful if data allocated to the MOR seed points need to be augmented.
zval_names : list of str
A list containing string labels for the z values to attribute to points. Will be used as column headers for z value point dataframes.
continent_mask_filename : str
An optional parameter pointing to the full path to a continental mask for each timestep. Assuming the time is in the filename, i.e. "/path/to/continent_mask_0Ma.nc", it should be passed as "/path/to/continent_mask_{}Ma.nc" with curly brackets. Include decimal formatting if needed.
Expand source code
class SeafloorGrid(object):

    """A class to generate grids that track data atop global ocean basin points
    (which emerge from mid ocean ridges) through geological time.

    Parameters
    ----------
    PlateReconstruction_object : instance of <gplately.PlateReconstruction>
        A GPlately PlateReconstruction object with a <pygplates.RotationModel> and
        a <pygplates.FeatureCollection> containing topology features.
    PlotTopologies_object : instance of <gplately.PlotTopologies>
        A GPlately PlotTopologies object with a continental polygon or COB terrane
        polygon file to mask grids with.
    max_time : float
        The maximum time for age gridding.
    min_time : float
        The minimum time for age gridding.
    ridge_time_step : float
        The delta time for resolving ridges (and thus age gridding).
    save_directory : str, default None'
        The top-level directory to save all outputs to.
    file_collection : str, default None
        A string to identify the plate model used (will be automated later).
    refinement_levels : int, default 5
        Control the number of points in the icosahedral mesh (higher integer
        means higher resolution of continent masks).
    ridge_sampling : float, default 0.5
        Spatial resolution (in degrees) at which points that emerge from ridges are tessellated.
    extent : list of float or int, default [-180.,180.,-90.,90.]
        A list containing the mininum longitude, maximum longitude, minimum latitude and
        maximum latitude extents for all masking and final grids.
    grid_spacing : float, default None
        The degree spacing/interval with which to space grid points across all masking and
        final grids. If `grid_spacing` is provided, all grids will use it. If not,
        `grid_spacing` defaults to 0.1.
    subduction_collision_parameters : len-2 tuple of float, default (5.0, 10.0)
        A 2-tuple of (threshold velocity delta in kms/my, threshold distance to boundary
        per My in kms/my)
    initial_ocean_mean_spreading_rate : float, default 75.
        A spreading rate to uniformly allocate to points that define the initial ocean
        basin. These points will have inaccurate ages, but most of them will be phased
        out after points with plate-model prescribed ages emerge from ridges and spread
        to push them towards collision boundaries (where they are deleted).
    resume_from_checkpoints : bool, default False
        If set to `True`, and the gridding preparation stage (continental masking and/or
        ridge seed building) is interrupted, SeafloorGrids will resume gridding preparation
        from the last successful preparation time.
        If set to `False`, SeafloorGrids will automatically overwrite all files in
        `save_directory` if re-run after interruption, or normally re-run, thus beginning
        gridding preparation from scratch. `False` will be useful if data allocated to the
        MOR seed points need to be augmented.
    zval_names : list of str
        A list containing string labels for the z values to attribute to points.
        Will be used as column headers for z value point dataframes.
    continent_mask_filename : str
        An optional parameter pointing to the full path to a continental mask for each timestep.
        Assuming the time is in the filename, i.e. "/path/to/continent_mask_0Ma.nc", it should be
        passed as "/path/to/continent_mask_{}Ma.nc" with curly brackets. Include decimal formatting
        if needed.
    """

    def __init__(
        self,
        PlateReconstruction_object,
        PlotTopologies_object,
        max_time,
        min_time,
        ridge_time_step,
        save_directory="agegrids",
        file_collection=None,
        refinement_levels=5,
        ridge_sampling=0.5,
        extent=(-180, 180, -90, 90),
        grid_spacing=None,
        subduction_collision_parameters=(5.0, 10.0),
        initial_ocean_mean_spreading_rate=75.0,
        resume_from_checkpoints=False,
        zval_names=("SPREADING_RATE",),
        continent_mask_filename=None,
    ):
        # Provides a rotation model, topology features and reconstruction time for
        # the SeafloorGrid
        self.PlateReconstruction_object = PlateReconstruction_object
        self.rotation_model = self.PlateReconstruction_object.rotation_model
        self.topology_features = self.PlateReconstruction_object.topology_features
        self._PlotTopologies_object = PlotTopologies_object
        save_directory = str(save_directory)
        if not os.path.isdir(save_directory):
            print("Output directory does not exist; creating now: " + save_directory)
            os.makedirs(save_directory, exist_ok=True)
        self.save_directory = save_directory
        if file_collection is not None:
            file_collection = str(file_collection)
        self.file_collection = file_collection

        # Topological parameters
        self.refinement_levels = refinement_levels
        self.ridge_sampling = ridge_sampling
        self.subduction_collision_parameters = subduction_collision_parameters
        self.initial_ocean_mean_spreading_rate = initial_ocean_mean_spreading_rate

        # Gridding parameters
        self.extent = extent

        # A list of degree spacings that allow an even division of the global lat-lon extent.
        divisible_degree_spacings = [0.1, 0.25, 0.5, 0.75, 1.0]

        if grid_spacing:
            # If the provided degree spacing is in the list of permissible spacings, use it
            # and prepare the number of pixels in x and y (spacingX and spacingY)
            if grid_spacing in divisible_degree_spacings:
                self.grid_spacing = grid_spacing
                self.spacingX = _deg2pixels(
                    grid_spacing, self.extent[0], self.extent[1]
                )
                self.spacingY = _deg2pixels(
                    grid_spacing, self.extent[2], self.extent[3]
                )

            # If the provided spacing is >>1 degree, use 1 degree
            elif grid_spacing >= divisible_degree_spacings[-1]:
                self.grid_spacing = divisible_degree_spacings[-1]
                self.spacingX = _deg2pixels(
                    divisible_degree_spacings[-1], self.extent[0], self.extent[1]
                )
                self.spacingY = _deg2pixels(
                    divisible_degree_spacings[-1], self.extent[2], self.extent[3]
                )

                with warnings.catch_warnings():
                    warnings.simplefilter("always")
                    warnings.warn(
                        "The provided grid_spacing of {} is quite large. To preserve the grid resolution, a {} degree spacing has been employed instead".format(
                            grid_spacing, self.grid_spacing
                        )
                    )

            # If the provided degree spacing is not in the list of permissible spacings, but below
            # a degree, find the closest permissible degree spacing. Use this and find
            # spacingX and spacingY.
            else:
                for divisible_degree_spacing in divisible_degree_spacings:
                    # The tolerance is half the difference between consecutive divisible spacings.
                    # Max is 1 degree for now - other integers work but may provide too little of a
                    # grid resolution.
                    if abs(grid_spacing - divisible_degree_spacing) <= 0.125:
                        new_deg_res = divisible_degree_spacing
                        self.grid_spacing = new_deg_res
                        self.spacingX = _deg2pixels(
                            new_deg_res, self.extent[0], self.extent[1]
                        )
                        self.spacingY = _deg2pixels(
                            new_deg_res, self.extent[2], self.extent[3]
                        )

                with warnings.catch_warnings():
                    warnings.simplefilter("always")
                    warnings.warn(
                        "The provided grid_spacing of {} does not cleanly divide into the global extent. A degree spacing of {} has been employed instead.".format(
                            grid_spacing, self.grid_spacing
                        )
                    )

        else:
            # If a spacing degree is not provided, use default
            # resolution and get default spacingX and spacingY
            self.grid_spacing = 0.1
            self.spacingX = 3601
            self.spacingY = 1801

        self.resume_from_checkpoints = resume_from_checkpoints

        # Temporal parameters
        self._max_time = float(max_time)
        self.min_time = float(min_time)
        self.ridge_time_step = float(ridge_time_step)
        self.time_array = np.arange(
            self._max_time, self.min_time - 0.1, -self.ridge_time_step
        )

        # If PlotTopologies' time attribute is not equal to the maximum time in the
        # seafloor grid reconstruction tree, make it equal. This will ensure the time
        # for continental masking is consistent.
        if self._PlotTopologies_object.time != self._max_time:
            self._PlotTopologies_object.time = self._max_time

        # Essential features and meshes for the SeafloorGrid
        self.continental_polygons = ensure_polygon_geometry(
            self._PlotTopologies_object.continents, self.rotation_model, self._max_time
        )
        self._PlotTopologies_object.continents = PlotTopologies_object.continents
        (
            self.icosahedral_multi_point,
            self.icosahedral_global_mesh,
        ) = create_icosahedral_mesh(self.refinement_levels)

        # Z value parameters
        self.zval_names = zval_names
        self.default_column_headers = [
            "CURRENT_LONGITUDES",
            "CURRENT_LATITUDES",
            "SEAFLOOR_AGE",
            "BIRTH_LAT_SNAPSHOT",
            "POINT_ID_SNAPSHOT",
        ]
        self.total_column_headers = np.concatenate(
            [self.default_column_headers, self.zval_names]
        )

        # Filename for continental masks that the user can provide instead of building it here
        self.continent_mask_filename = continent_mask_filename

        # If the user provides a continental mask filename, we need to downsize the mask
        # resolution for when we create the initial ocean mesh. The mesh does not need to be high-res.
        if self.continent_mask_filename is not None:
            # Determine which percentage to use to scale the continent mask resolution at max time
            def _map_res_to_node_percentage(self, continent_mask_filename):
                maskY, maskX = grids.read_netcdf_grid(
                    continent_mask_filename.format(self._max_time)
                ).shape

                mask_deg = _pixels2deg(maskX, self.extent[0], self.extent[1])

                if mask_deg <= 0.1:
                    percentage = 0.1
                elif mask_deg <= 0.25:
                    percentage = 0.3
                elif mask_deg <= 0.5:
                    percentage = 0.5
                elif mask_deg < 0.75:
                    percentage = 0.6
                elif mask_deg >= 1:
                    percentage = 0.75
                return mask_deg, percentage

            _, self.percentage = _map_res_to_node_percentage(
                self, self.continent_mask_filename
            )

    # Allow SeafloorGrid time to be updated, and to update the internally-used
    # PlotTopologies' time attribute too. If PlotTopologies is used outside the
    # object, its `time` attribute is not updated.
    @property
    def max_time(self):
        """The reconstruction time."""
        return self._max_time

    @property
    def PlotTopologiesTime(self):
        return self._PlotTopologies_object.time

    @max_time.setter
    def max_time(self, var):
        if var >= 0:
            self.update_time(var)
        else:
            raise ValueError("Enter a valid time >= 0")

    def update_time(self, max_time):
        self._max_time = float(max_time)
        self._PlotTopologies_object.time = float(max_time)

    def _collect_point_data_in_dataframe(
        self, pygplates_featurecollection, zval_ndarray, time
    ):
        """At a given timestep, create a pandas dataframe holding all attributes of point features.

        Rather than store z values as shapefile attributes, store them in a dataframe indexed by
        feature ID.
        """
        # Turn the zval_ndarray into a numPy array
        zval_ndarray = np.array(zval_ndarray)

        feature_id = []
        for feature in pygplates_featurecollection:
            feature_id.append(str(feature.get_feature_id()))

        # Prepare the zval ndarray (can be of any shape) to be saved with default point data
        zvals_to_store = {}

        # If only one zvalue (fow now, spreading rate)
        if zval_ndarray.ndim == 1:
            zvals_to_store[self.zval_names[0]] = zval_ndarray
            data_to_store = [zvals_to_store[i] for i in zvals_to_store]
        else:
            for i in zval_ndarray.shape[1]:
                zvals_to_store[self.zval_names[i]] = [
                    list(j) for j in zip(*zval_ndarray)
                ][i]
            data_to_store = [zvals_to_store[i] for i in zvals_to_store]

        basename = "point_data_dataframe_{}Ma".format(time)
        if self.file_collection is not None:
            basename = "{}_{}".format(self.file_collection, basename)
        filename = os.path.join(self.save_directory, basename)
        np.savez_compressed(filename, FEATURE_ID=feature_id, *data_to_store)
        return

    def create_initial_ocean_seed_points(self):
        """Create the initial ocean basin seed point domain (at `max_time` only)
        using Stripy's icosahedral triangulation with the specified
        `self.refinement_levels`.

        The ocean mesh starts off as a global-spanning Stripy icosahedral mesh.
        `create_initial_ocean_seed_points` passes the automatically-resolved-to-current-time
        continental polygons from the `PlotTopologies_object`'s `continents` attribute
        (which can be from a COB terrane file or a continental polygon file) into
        Plate Tectonic Tools' point-in-polygon routine. It identifies ocean basin points
        that lie:
        * outside the polygons (for the ocean basin point domain)
        * inside the polygons (for the continental mask)

        Points from the mesh outside the continental polygons make up the ocean basin seed
        point mesh. The masked mesh is outputted as a compressed GPML (GPMLZ) file with
        the filename: "ocean_basin_seed_points_{}Ma.gpmlz" if a `save_directory` is passed.
        Otherwise, the mesh is returned as a pyGPlates FeatureCollection object.

        Notes
        -----
        This point mesh represents ocean basin seafloor that was produced
        before `SeafloorGrid.max_time`, and thus has unknown properties like valid
        time and spreading rate. As time passes, the plate reconstruction model sees
        points emerging from MORs. These new points spread to occupy the ocean basins,
        moving the initial filler points closer to subduction zones and continental
        polygons with which they can collide. If a collision is detected by
        `PlateReconstruction`s `ReconstructByTopologies` object, these points are deleted.

        Ideally, if a reconstruction tree spans a large time range, **all** initial mesh
        points would collide with a continent or be subducted, leaving behind a mesh of
        well-defined MOR-emerged ocean basin points that data can be attributed to.
        However, some of these initial points situated close to contiental boundaries are
        retained through time - these form point artefacts with anomalously high ages. Even
        deep-time plate models (e.g. 1 Ga) will have these artefacts - removing them would
        require more detail to be added to the reconstruction model.

        Returns
        -------
        ocean_basin_point_mesh : pygplates.FeatureCollection of pygplates.MultiPointOnSphere
            A feature collection of point objects on the ocean basin.
        """

        if self.continent_mask_filename is None:
            # Ensure COB terranes at max time have reconstruction IDs and valid times
            COB_polygons = ensure_polygon_geometry(
                self._PlotTopologies_object.continents,
                self.rotation_model,
                self._max_time,
            )

            # zval is a binary array encoding whether a point
            # coordinate is within a COB terrane polygon or not.
            # Use the icosahedral mesh MultiPointOnSphere attribute
            _, ocean_basin_point_mesh, zvals = point_in_polygon_routine(
                self.icosahedral_multi_point, COB_polygons
            )

            # Plates to partition with
            plate_partitioner = pygplates.PlatePartitioner(
                COB_polygons,
                self.rotation_model,
            )

            # Plate partition the ocean basin points
            meshnode_feature = pygplates.Feature(
                pygplates.FeatureType.create_from_qualified_string("gpml:MeshNode")
            )
            meshnode_feature.set_geometry(
                ocean_basin_point_mesh
                # multi_point
            )
            ocean_basin_meshnode = pygplates.FeatureCollection(meshnode_feature)

            paleogeography = plate_partitioner.partition_features(
                ocean_basin_meshnode,
                partition_return=pygplates.PartitionReturn.separate_partitioned_and_unpartitioned,
                properties_to_copy=[pygplates.PropertyName.gpml_shapefile_attributes],
            )
            ocean_points = paleogeography[1]  # Separate those inside polygons
            continent_points = paleogeography[0]  # Separate those outside polygons

        # If a set of continent masks was passed, we can use max_time's continental
        # mask to build the initial profile of seafloor age.
        else:
            max_time_cont_mask = grids.Raster(
                self.continent_mask_filename.format(self._max_time)
            )
            # If the input grid is at 0.5 degree uniform spacing, then the input
            # grid is 7x more populated than a 6-level stripy icosahedral mesh and
            # using this resolution for the initial ocean mesh will dramatically slow down
            # reconstruction by topologies.
            # Scale down the resolution based on the input mask resolution
            # (percentage was found in __init__.)
            max_time_cont_mask.resize(
                int(max_time_cont_mask.shape[0] * self.percentage),
                int(max_time_cont_mask.shape[1] * self.percentage),
                inplace=True,
            )

            lat = np.linspace(-90, 90, max_time_cont_mask.shape[0])
            lon = np.linspace(-180, 180, max_time_cont_mask.shape[1])

            llon, llat = np.meshgrid(lon, lat)

            mask_inds = np.where(max_time_cont_mask.data.flatten() == 0)
            mask_vals = max_time_cont_mask.data.flatten()
            mask_lon = llon.flatten()[mask_inds]
            mask_lat = llat.flatten()[mask_inds]

            ocean_pt_feature = pygplates.Feature()
            ocean_pt_feature.set_geometry(
                pygplates.MultiPointOnSphere(zip(mask_lat, mask_lon))
            )
            ocean_points = [ocean_pt_feature]

        # Now that we have ocean points...
        # Determine age of ocean basin points using their proximity to MOR features
        # and an assumed globally-uniform ocean basin mean spreading rate.
        # We need resolved topologies at the `max_time` to pass into the proximity
        # function
        resolved_topologies = []
        shared_boundary_sections = []
        pygplates.resolve_topologies(
            self.topology_features,
            self.rotation_model,
            resolved_topologies,
            self._max_time,
            shared_boundary_sections,
        )
        pX, pY, pZ = tools.find_distance_to_nearest_ridge(
            resolved_topologies,
            shared_boundary_sections,
            ocean_points,
        )

        # Divide spreading rate by 2 to use half the mean spreading rate
        pAge = np.array(pZ) / (self.initial_ocean_mean_spreading_rate / 2.0)

        initial_ocean_point_features = []
        initial_ocean_multipoints = []

        for point in zip(pX, pY, pAge):
            point_feature = pygplates.Feature()
            point_feature.set_geometry(pygplates.PointOnSphere(point[1], point[0]))

            # Add 'time' to the age at the time of computation, to get the valid time in Ma
            point_feature.set_valid_time(point[2] + self._max_time, -1)

            # For now: custom zvals are added as shapefile attributes - will attempt pandas data frames
            # point_feature = set_shapefile_attribute(point_feature, self.initial_ocean_mean_spreading_rate, "SPREADING_RATE")  # Seems like static data
            initial_ocean_point_features.append(point_feature)
            initial_ocean_multipoints.append(point_feature.get_geometry())

        # print(initial_ocean_point_features)
        multi_point_feature = pygplates.MultiPointOnSphere(initial_ocean_multipoints)

        basename = "ocean_basin_seed_points_{}_RLs_{}Ma.gpmlz".format(
            self.refinement_levels,
            self._max_time,
        )
        if self.file_collection is not None:
            basename = "{}_{}".format(self.file_collection, basename)
        output_filename = os.path.join(self.save_directory, basename)
        initial_ocean_feature_collection = pygplates.FeatureCollection(
            initial_ocean_point_features
        )
        initial_ocean_feature_collection.write(output_filename)

        # Collect all point feature data into a pandas dataframe
        self._collect_point_data_in_dataframe(
            initial_ocean_feature_collection,
            np.array(
                [self.initial_ocean_mean_spreading_rate] * len(pX)
            ),  # for now, spreading rate is one zvalue for initial ocean points. will other zvalues need to have a generalised workflow?
            self._max_time,
        )

        return (
            pygplates.FeatureCollection(initial_ocean_point_features),
            multi_point_feature,
        )

    def _get_mid_ocean_ridge_seedpoints(self, time_array):
        # Topology features from `PlotTopologies`.
        topology_features_extracted = pygplates.FeaturesFunctionArgument(
            self.topology_features
        )

        # Create a mask for each timestep
        if time_array[0] != self._max_time:
            print(
                "MOR seed point building interrupted - resuming at {} Ma!".format(
                    time_array[0]
                )
            )

        for time in time_array:
            # Points and their z values that emerge from MORs at this time.
            shifted_mor_points = []
            point_spreading_rates = []

            # Resolve topologies to the current time.
            resolved_topologies = []
            shared_boundary_sections = []
            pygplates.resolve_topologies(
                topology_features_extracted.get_features(),
                self.rotation_model,
                resolved_topologies,
                time,
                shared_boundary_sections,
            )

            # pygplates.ResolvedTopologicalSection objects.
            for shared_boundary_section in shared_boundary_sections:
                if (
                    shared_boundary_section.get_feature().get_feature_type()
                    == pygplates.FeatureType.create_gpml("MidOceanRidge")
                ):
                    spreading_feature = shared_boundary_section.get_feature()

                    # Find the stage rotation of the spreading feature in the
                    # frame of reference of its geometry at the current
                    # reconstruction time (the MOR is currently actively spreading).
                    # The stage pole can then be directly geometrically compared
                    # to the *reconstructed* spreading geometry.
                    stage_rotation = separate_ridge_transform_segments.get_stage_rotation_for_reconstructed_geometry(
                        spreading_feature, self.rotation_model, time
                    )
                    if not stage_rotation:
                        # Skip current feature - it's not a spreading feature.
                        continue

                    # Get the stage pole of the stage rotation.
                    # Note that the stage rotation is already in frame of
                    # reference of the *reconstructed* geometry at the spreading time.
                    stage_pole, _ = stage_rotation.get_euler_pole_and_angle()

                    # One way rotates left and the other right, but don't know
                    # which - doesn't matter in our example though.
                    rotate_slightly_off_mor_one_way = pygplates.FiniteRotation(
                        stage_pole, np.radians(0.01)
                    )
                    rotate_slightly_off_mor_opposite_way = (
                        rotate_slightly_off_mor_one_way.get_inverse()
                    )

                    subsegment_index = []
                    # Iterate over the shared sub-segments.
                    for (
                        shared_sub_segment
                    ) in shared_boundary_section.get_shared_sub_segments():
                        # Tessellate MOR section.
                        mor_points = pygplates.MultiPointOnSphere(
                            shared_sub_segment.get_resolved_geometry().to_tessellated(
                                np.radians(self.ridge_sampling)
                            )
                        )

                        coords = mor_points.to_lat_lon_list()
                        lats = [i[0] for i in coords]
                        lons = [i[1] for i in coords]
                        left_plate = (
                            shared_boundary_section.get_feature().get_left_plate(None)
                        )
                        right_plate = (
                            shared_boundary_section.get_feature().get_right_plate(None)
                        )
                        if left_plate is not None and right_plate is not None:
                            # Get the spreading rates for all points in this sub segment
                            (
                                spreading_rates,
                                subsegment_index,
                            ) = tools.calculate_spreading_rates(
                                time=time,
                                lons=lons,
                                lats=lats,
                                left_plates=[left_plate] * len(lons),
                                right_plates=[right_plate] * len(lons),
                                rotation_model=self.rotation_model,
                                delta_time=self.ridge_time_step,
                            )

                        else:
                            spreading_rates = [np.nan] * len(lons)

                        # Loop through all but the 1st and last points in the current sub segment
                        for point, rate in zip(
                            mor_points.get_points()[1:-1],
                            spreading_rates[1:-1],
                        ):
                            # Add the point "twice" to the main shifted_mor_points list; once for a L-side
                            # spread, another for a R-side spread. Then add the same spreading rate twice
                            # to the list - this therefore assumes spreading rate is symmetric.
                            shifted_mor_points.append(
                                rotate_slightly_off_mor_one_way * point
                            )
                            shifted_mor_points.append(
                                rotate_slightly_off_mor_opposite_way * point
                            )
                            point_spreading_rates.extend([rate] * 2)
                            # point_indices.extend(subsegment_index)

            # Summarising get_isochrons_for_ridge_snapshot;
            # Write out the ridge point born at 'ridge_time' but their position at 'ridge_time - time_step'.
            mor_point_features = []
            for curr_point in shifted_mor_points:
                feature = pygplates.Feature()
                feature.set_geometry(curr_point)
                feature.set_valid_time(time, -999)  # delete - time_step
                # feature.set_name(str(spreading_rate))
                # feature = set_shapefile_attribute(feature, spreading_rate, "SPREADING_RATE")  # make spreading rate a shapefile attribute
                mor_point_features.append(feature)

            mor_points = pygplates.FeatureCollection(mor_point_features)

            # Write MOR points at `time` to gpmlz
            basename = "MOR_plus_one_points_{:0.2f}.gpmlz".format(time)
            if self.file_collection is not None:
                basename = "{}_{}".format(self.file_collection, basename)
            mor_points.write(os.path.join(self.save_directory, basename))
            # Make sure the max time dataframe is for the initial ocean points only
            if time != self._max_time:
                self._collect_point_data_in_dataframe(
                    mor_points, point_spreading_rates, time
                )
            print("Finished building MOR seedpoints at {} Ma!".format(time))
        return

    def build_all_MOR_seedpoints(self):
        """Resolve mid-ocean ridges for all times between `min_time` and `max_time`, divide them
        into points that make up their shared sub-segments. Rotate these points to the left
        and right of the ridge using their stage rotation so that they spread from the ridge.

        Z-value allocation to each point is done here. In future, a function (like
        the spreading rate function) to calculate general z-data will be an input parameter.

        Notes
        -----
        If MOR seed point building is interrupted, progress is safeguarded as long as
        `resume_from_checkpoints` is set to `True`.

        This assumes that points spread from ridges symmetrically, with the exception of
        large ridge jumps at successive timesteps. Therefore, z-values allocated to ridge-emerging
        points will appear symmetrical until changes in spreading ridge geometries create
        asymmetries.

        In future, this will have a checkpoint save feature so that execution
        (which occurs during preparation for ReconstructByTopologies and can take several hours)
        can be safeguarded against run interruptions.

        Parameters
        ----------
        time : float
            The time at which to resolve ridge points and stage-rotate them off the ridge.

        Returns
        -------
        mor_point_features : FeatureCollection
            All ridge seed points that have emerged from all ridge topologies at `time`.
            These points have spread by being slightly rotated away from
            ridge locations at `time`.

        References
        ----------
        get_mid_ocean_ridge_seedpoints() has been adapted from
        https://github.com/siwill22/agegrid-0.1/blob/master/automatic_age_grid_seeding.py#L117.
        """

        # If we mustn't overwrite existing files in the `save_directory`, check the status of MOR seeding
        # to know where to start/continue seeding
        if self.resume_from_checkpoints:
            # Check the last MOR seedpoint gpmlz file that was built
            checkpointed_MOR_seedpoints = [
                s.split("/")[-1]
                for s in glob.glob(self.save_directory + "/" + "*MOR_plus_one_points*")
            ]
            try:
                # -2 as an index accesses the age (float type), safeguards against identifying numbers in the SeafloorGrid.file_collection string
                last_seed_time = np.sort(
                    [
                        float(re.findall(r"\d+", s)[-2])
                        for s in checkpointed_MOR_seedpoints
                    ]
                )[0]
            # If none were built yet
            except:
                last_seed_time = "nil"

            # If MOR seeding has not started, start it from the top
            if last_seed_time == "nil":
                time_array = self.time_array

            # If the last seed time it could identify is outside the time bounds of the current instance of SeafloorGrid, start
            # from the top (this may happen if we use the same save directory for grids for a new set of times)
            elif last_seed_time not in self.time_array:
                time_array = self.time_array

            # If seeding was done to the min_time, we are finished
            elif last_seed_time == self.min_time:
                return

            # If seeding to `min_time` has been interrupted, resume it at last_masked_time.
            else:
                time_array = np.arange(
                    last_seed_time, self.min_time - 0.1, -self.ridge_time_step
                )

        # If we must overwrite all files in `save_directory`, start from `max_time`.
        else:
            time_array = self.time_array

        # Build all continental masks and spreading ridge points (with z values)
        self._get_mid_ocean_ridge_seedpoints(time_array)
        return

    def _create_continental_mask(self, time_array):
        """Create a continental mask for each timestep."""
        if time_array[0] != self._max_time:
            print(
                "Masking interrupted - resuming continental mask building at {} Ma!".format(
                    time_array[0]
                )
            )

        for time in time_array:
            self._PlotTopologies_object.time = time
            geoms = self._PlotTopologies_object.continents
            final_grid = grids.rasterise(
                geoms,
                key=1.0,
                shape=(self.spacingY, self.spacingX),
                extent=self.extent,
                origin="lower",
            )
            final_grid[np.isnan(final_grid)] = 0.0

            output_basename = "continent_mask_{}Ma.nc".format(time)
            if self.file_collection is not None:
                output_basename = "{}_{}".format(
                    self.file_collection,
                    output_basename,
                )
            output_filename = os.path.join(
                self.save_directory,
                output_basename,
            )
            grids.write_netcdf_grid(
                output_filename, final_grid, extent=[-180, 180, -90, 90]
            )
            print("Finished building a continental mask at {} Ma!".format(time))

        return

    def build_all_continental_masks(self):
        """Create a continental mask to define the ocean basin for all times between
        `min_time` and `max_time`.  as well as to use as continental collision
        boundaries in `ReconstructByTopologies`.

        Notes
        -----
        Continental masking progress is safeguarded if ever masking is interrupted,
        provided that `resume_from_checkpoints` is set to `True`.

        If `ReconstructByTopologies` identifies a continental collision
        between oceanic points and the boundaries of this continental
        mask at `time`, those points are deleted at `time`.

        The continental mask is also saved to "/continent_mask_{}Ma.nc" as a
        compressed netCDF4 file if a `save_directory` is passed. Otherwise,
        the final grid is returned as a NumPy ndarray object.

        Returns
        -------
        all_continental_masks : list of ndarray
            A masked grid per timestep in `time_array` with 1=continental point,
            and 0=ocean point, for all points on the full global icosahedral mesh.
        """

        # If we mustn't overwrite existing files in the `save_directory`, check the status
        # of continental masking to know where to start/continue masking
        if self.resume_from_checkpoints:
            # Check the last continental mask that could be built
            checkpointed_continental_masks = [
                s.split("/")[-1]
                for s in glob.glob(self.save_directory + "/" + "*continent_mask*")
            ]
            try:
                # -2 as an index accesses the age (float type), safeguards against identifying numbers in the SeafloorGrid.file_collection string
                last_masked_time = np.sort(
                    [
                        float(re.findall(r"\d+", s)[-2])
                        for s in checkpointed_continental_masks
                    ]
                )[0]
            # If none were built yet
            except:
                last_masked_time = "nil"

            # If masking has not started, start it from the top
            if last_masked_time == "nil":
                time_array = self.time_array

            # If the last seed time it could identify is outside the time bounds of the current instance of SeafloorGrid, start
            # from the top (this may happen if we use the same save directory for grids for a new set of times)
            elif last_masked_time not in self.time_array:
                time_array = self.time_array

            # If masking was done to the min_time, we are finished
            elif last_masked_time == self.min_time:
                return

            # If masking to `min_time` has been interrupted, resume it at last_masked_time.
            else:
                time_array = np.arange(
                    last_masked_time, self.min_time - 0.1, -self.ridge_time_step
                )

        # If we must overwrite all files in `save_directory`, start from `max_time`.
        else:
            time_array = self.time_array

        # Build all continental masks and spreading ridge points (with z values)
        self._create_continental_mask(time_array)
        return

    def _extract_zvalues_from_npz_to_ndarray(self, featurecollection, time):
        # NPZ file of seedpoint z values that emerged at this time
        basename = "point_data_dataframe_{}Ma.npz".format(time)
        if self.file_collection is not None:
            basename = "{}_{}".format(self.file_collection, basename)
        filename = os.path.join(self.save_directory, basename)
        loaded_npz = np.load(filename)

        curr_zvalues = np.empty([len(featurecollection), len(self.zval_names)])
        for i in range(len(self.zval_names)):
            # Account for the 0th index being for point feature IDs
            curr_zvalues[:, i] = np.array(loaded_npz["arr_{}".format(i)])

        return curr_zvalues

    def prepare_for_reconstruction_by_topologies(self):
        """Prepare three main auxiliary files for seafloor data gridding:
        * Initial ocean seed points (at `max_time`)
        * Continental masks (from `max_time` to `min_time`)
        * MOR points (from `max_time` to `min_time`)

        Returns lists of all attributes for the initial ocean point mesh and
        all ridge points for all times in the reconstruction time array.
        """

        # INITIAL OCEAN SEED POINT MESH ----------------------------------------------------
        (
            initial_ocean_seed_points,
            initial_ocean_seed_points_mp,
        ) = self.create_initial_ocean_seed_points()
        print("Finished building initial_ocean_seed_points!")

        # MOR SEED POINTS AND CONTINENTAL MASKS --------------------------------------------

        # The start time for seeding is controlled by whether the overwrite_existing_gridding_inputs
        # parameter is set to `True` (in which case the start time is `max_time`). If it is `False`
        # and;
        # - a run of seeding and continental masking was interrupted, and ridge points were
        # checkpointed at n Ma, seeding resumes at n-1 Ma until `min_time` or another interruption
        # occurs;
        # - seeding was completed but the subsequent gridding input creation was interrupted,
        # seeding is assumed completed and skipped. The workflow automatically proceeds to re-gridding.

        if self.continent_mask_filename is None:
            self.build_all_continental_masks()
        else:
            print(
                "Continent masks passed to SeafloorGrid - skipping continental mask generation!"
            )

        self.build_all_MOR_seedpoints()

        # ALL-TIME POINTS -----------------------------------------------------
        # Extract all feature attributes for all reconstruction times into lists
        active_points = []
        appearance_time = []
        birth_lat = []  # latitude_of_crust_formation
        prev_lat = []
        prev_lon = []

        # Extract point feature attributes from MOR seed points
        all_mor_features = []
        zvalues = np.empty((0, len(self.zval_names)))
        for time in self.time_array:
            # If we're at the maximum time, start preparing points from the initial ocean mesh
            # as well as their z values
            if time == self._max_time:
                for feature in initial_ocean_seed_points:
                    active_points.append(feature.get_geometry())
                    appearance_time.append(feature.get_valid_time()[0])
                    birth_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                    prev_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                    prev_lon.append(feature.get_geometry().to_lat_lon_list()[0][1])

                curr_zvalues = self._extract_zvalues_from_npz_to_ndarray(
                    initial_ocean_seed_points, time
                )
                zvalues = np.concatenate((zvalues, curr_zvalues), axis=0)

            # Otherwise, we'd be preparing MOR points and their z values
            else:
                # GPMLZ file of MOR seedpoints
                basename = "MOR_plus_one_points_{:0.2f}.gpmlz".format(time)
                if self.file_collection is not None:
                    basename = "{}_{}".format(self.file_collection, basename)
                filename = os.path.join(self.save_directory, basename)
                features = pygplates.FeatureCollection(filename)

                for feature in features:
                    if feature.get_valid_time()[0] < self.time_array[0]:
                        active_points.append(feature.get_geometry())
                        appearance_time.append(feature.get_valid_time()[0])
                        birth_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                        prev_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                        prev_lon.append(feature.get_geometry().to_lat_lon_list()[0][1])

                # COLLECT NDARRAY OF ALL ZVALUES IN THIS TIMESTEP ------------------
                curr_zvalues = self._extract_zvalues_from_npz_to_ndarray(features, time)
                zvalues = np.concatenate((zvalues, curr_zvalues), axis=0)

        return active_points, appearance_time, birth_lat, prev_lat, prev_lon, zvalues

    def reconstruct_by_topologies(self):
        """Obtain all active ocean seed points at `time` - these are
        points that have not been consumed at subduction zones or have not
        collided with continental polygons.

        All active points' latitudes, longitues, seafloor ages, spreading rates and all
        other general z-values are saved to a gridding input file (.npz).
        """
        print("Preparing all initial files...")

        # Obtain all info from the ocean seed points and all MOR points through time, store in
        # arrays
        (
            active_points,
            appearance_time,
            birth_lat,
            prev_lat,
            prev_lon,
            zvalues,
        ) = self.prepare_for_reconstruction_by_topologies()

        ####  Begin reconstruction by topology process:
        # Indices for all points (`active_points`) that have existed from `max_time` to `min_time`.
        point_id = range(len(active_points))

        # Specify the default collision detection region as subduction zones
        default_collision = reconstruction._DefaultCollision(
            feature_specific_collision_parameters=[
                (
                    pygplates.FeatureType.gpml_subduction_zone,
                    self.subduction_collision_parameters,
                )
            ]
        )
        # In addition to the default subduction detection, also detect continental collisions
        # Use the input continent mask if it is provided.
        if self.continent_mask_filename is not None:
            collision_spec = reconstruction._ContinentCollision(
                # This filename string should not have a time formatted into it - this is
                # taken care of later.
                self.continent_mask_filename,
                default_collision,
                verbose=False,
            )
        else:
            # If a continent mask is not provided, use the ones made.
            mask_basename = r"continent_mask_{}Ma.nc"
            if self.file_collection is not None:
                mask_basename = str(self.file_collection) + "_" + mask_basename
            mask_template = os.path.join(self.save_directory, mask_basename)
            collision_spec = reconstruction._ContinentCollision(
                mask_template,
                default_collision,
                verbose=False,
            )

        # Call the reconstruct by topologies object
        topology_reconstruction = reconstruction._ReconstructByTopologies(
            self.rotation_model,
            self.topology_features,
            self._max_time,
            self.min_time,
            self.ridge_time_step,
            active_points,
            point_begin_times=appearance_time,
            detect_collisions=collision_spec,
        )
        # Initialise the reconstruction.
        topology_reconstruction.begin_reconstruction()

        # Loop over the reconstruction times until the end of the reconstruction time span, or until
        # all points have entered their valid time range *and* either exited their time range or
        # have been deactivated (subducted forward in time or consumed by MOR backward in time).
        reconstruction_data = []
        while True:
            print(
                "Reconstruct by topologies: working on time {:0.2f} Ma".format(
                    topology_reconstruction.get_current_time()
                )
            )

            # NOTE:
            # topology_reconstruction.get_active_current_points() and topology_reconstruction.get_all_current_points()
            # are different. The former is a subset of the latter, and it represents all points at the timestep that
            # have not collided with a continental or subduction boundary. The remainders in the latter are inactive
            # (NoneType) points, which represent the collided points.

            # We need to access active point data from topology_reconstruction.get_all_current_points() because it has
            # the same length as the list of all initial ocean points and MOR seed points that have ever emerged from
            # spreading ridge topologies through `max_time` to `min_time`. Therefore, it protects the time and space
            # order in which all MOR points through time were seeded by pyGPlates. At any given timestep, not all these
            # points will be active, but their indices are retained. Thus, z value allocation, point latitudes and
            # longitudes of active points will be correctly indexed if taking it from
            # topology_reconstruction.get_all_current_points().
            curr_points = topology_reconstruction.get_active_current_points()
            curr_points_including_inactive = (
                topology_reconstruction.get_all_current_points()
            )

            # Collect latitudes and longitudes of currently ACTIVE points in the ocean basin
            curr_lat_lon_points = [point.to_lat_lon() for point in curr_points]

            if curr_lat_lon_points:
                # Get the number of active points at this timestep.
                num_current_points = len(curr_points)

                # ndarray to fill with active point lats, lons and zvalues
                # FOR NOW, the number of gridding input columns is 6:
                # 0 = longitude
                # 1 = latitude
                # 2 = seafloor age
                # 3 = birth latitude snapshot
                # 4 = point id

                # 5 for the default gridding columns above, plus additional zvalues added next
                total_number_of_columns = 5 + len(self.zval_names)
                gridding_input_data = np.empty(
                    [num_current_points, total_number_of_columns]
                )

                # Lons and lats are first and second columns of the ndarray respectively
                gridding_input_data[:, 1], gridding_input_data[:, 0] = zip(
                    *curr_lat_lon_points
                )

                # NOTE: We need a single index to access data from curr_points_including_inactive AND allocate
                # this data to an ndarray with a number of rows equal to num_current_points. This index will
                # append +1 after each loop through curr_points_including_inactive.
                i = 0

                # Get indices and points of all points at `time`, both active and inactive (which are NoneType points that
                # have undergone continental collision or subduction at `time`).
                for point_index, current_point in enumerate(
                    curr_points_including_inactive
                ):
                    # Look at all active points (these have not collided with a continent or trench)
                    if current_point is not None:
                        # Seafloor age
                        gridding_input_data[i, 2] = (
                            appearance_time[point_index]
                            - topology_reconstruction.get_current_time()
                        )
                        # Birth latitude (snapshot)
                        gridding_input_data[i, 3] = birth_lat[point_index]
                        # Point ID (snapshot)
                        gridding_input_data[i, 4] = point_id[
                            point_index
                        ]  # The ID of a corresponding point from the original list of all MOR-resolved points

                        # GENERAL Z-VALUE ALLOCATION
                        # Z values are 1st index onwards; 0th belongs to the point feature ID (thus +1)
                        for j in range(len(self.zval_names)):
                            # Adjusted index - and we have to add j to 5 to account for lat, lon, age, birth lat and point ID,
                            adjusted_index = 5 + j

                            # Spreading rate would be first
                            # Access current zval from the master list of all zvalues for all points that ever existed in time_array
                            gridding_input_data[i, adjusted_index] = zvalues[
                                point_index, j
                            ]

                        # Go to the next active point
                        i += 1

                gridding_input_dictionary = {}

                for i in list(range(total_number_of_columns)):
                    gridding_input_dictionary[self.total_column_headers[i]] = [
                        list(j) for j in zip(*gridding_input_data)
                    ][i]
                    data_to_store = [
                        gridding_input_dictionary[i] for i in gridding_input_dictionary
                    ]

                gridding_input_basename = "gridding_input_{:0.1f}Ma".format(
                    topology_reconstruction.get_current_time()
                )
                if self.file_collection is not None:
                    gridding_input_basename = "{}_{}".format(
                        self.file_collection,
                        gridding_input_basename,
                    )
                gridding_input_filename = os.path.join(
                    self.save_directory, gridding_input_basename
                )
                np.savez_compressed(gridding_input_filename, *data_to_store)

            if not topology_reconstruction.reconstruct_to_next_time():
                break

        print(
            "Reconstruction done for {}!".format(
                topology_reconstruction.get_current_time()
            )
        )
        # return reconstruction_data

    def lat_lon_z_to_netCDF(
        self,
        zval_name,
        time_arr=None,
        unmasked=False,
        nprocs=1,
    ):
        """Produce a netCDF4 grid of a z-value identified by its `zval_name` for a
        given time range in `time_arr`.

        Seafloor age can be gridded by passing `zval_name` as `SEAFLOOR_AGE`, and spreading
        rate can be gridded with `SPREADING_RATE`.

        Saves all grids to compressed netCDF format in the attributed directory. Grids
        can be read into ndarray format using `gplately.grids.read_netcdf_grid()`.

        Parameters
        ----------
        zval_name : str
            A string identifiers for a column in the ReconstructByTopologies gridding
            input files.
        time_arr : list of float, default None
            A time range to turn lons, lats and z-values into netCDF4 grids. If not provided,
            `time_arr` defaults to the full `time_array` provided to `SeafloorGrids`.
        unmasked : bool, default False
            Save unmasked grids, in addition to masked versions.
        nprocs : int, defaullt 1
            Number of processes to use for certain operations (requires joblib).
            Passed to `joblib.Parallel`, so -1 means all available processes.
        """

        parallel = None
        nprocs = int(nprocs)
        if nprocs != 1:
            try:
                from joblib import Parallel

                parallel = Parallel(nprocs)
            except ImportError:
                warnings.warn(
                    "Could not import joblib; falling back to serial execution"
                )

        # User can put any time array within SeafloorGrid bounds, but if none
        # is provided, it defaults to the attributed time array
        if time_arr is None:
            time_arr = self.time_array

        if parallel is None:
            for time in time_arr:
                _lat_lon_z_to_netCDF_time(
                    time=time,
                    zval_name=zval_name,
                    file_collection=self.file_collection,
                    save_directory=self.save_directory,
                    total_column_headers=self.total_column_headers,
                    extent=self.extent,
                    resX=self.spacingX,
                    resY=self.spacingY,
                    unmasked=unmasked,
                    continent_mask_filename=self.continent_mask_filename,
                )
        else:
            from joblib import delayed

            parallel(
                delayed(_lat_lon_z_to_netCDF_time)(
                    time=time,
                    zval_name=zval_name,
                    file_collection=self.file_collection,
                    save_directory=self.save_directory,
                    total_column_headers=self.total_column_headers,
                    extent=self.extent,
                    resX=self.spacingX,
                    resY=self.spacingY,
                    unmasked=unmasked,
                    continent_mask_filename=self.continent_mask_filename,
                )
                for time in time_arr
            )

Instance variables

var PlotTopologiesTime
Expand source code
@property
def PlotTopologiesTime(self):
    return self._PlotTopologies_object.time
var max_time

The reconstruction time.

Expand source code
@property
def max_time(self):
    """The reconstruction time."""
    return self._max_time

Methods

def build_all_MOR_seedpoints(self)

Resolve mid-ocean ridges for all times between min_time and max_time, divide them into points that make up their shared sub-segments. Rotate these points to the left and right of the ridge using their stage rotation so that they spread from the ridge.

Z-value allocation to each point is done here. In future, a function (like the spreading rate function) to calculate general z-data will be an input parameter.

Notes

If MOR seed point building is interrupted, progress is safeguarded as long as resume_from_checkpoints is set to True.

This assumes that points spread from ridges symmetrically, with the exception of large ridge jumps at successive timesteps. Therefore, z-values allocated to ridge-emerging points will appear symmetrical until changes in spreading ridge geometries create asymmetries.

In future, this will have a checkpoint save feature so that execution (which occurs during preparation for ReconstructByTopologies and can take several hours) can be safeguarded against run interruptions.

Parameters

time : float
The time at which to resolve ridge points and stage-rotate them off the ridge.

Returns

mor_point_features : FeatureCollection
All ridge seed points that have emerged from all ridge topologies at time. These points have spread by being slightly rotated away from ridge locations at time.

References

get_mid_ocean_ridge_seedpoints() has been adapted from https://github.com/siwill22/agegrid-0.1/blob/master/automatic_age_grid_seeding.py#L117.

Expand source code
def build_all_MOR_seedpoints(self):
    """Resolve mid-ocean ridges for all times between `min_time` and `max_time`, divide them
    into points that make up their shared sub-segments. Rotate these points to the left
    and right of the ridge using their stage rotation so that they spread from the ridge.

    Z-value allocation to each point is done here. In future, a function (like
    the spreading rate function) to calculate general z-data will be an input parameter.

    Notes
    -----
    If MOR seed point building is interrupted, progress is safeguarded as long as
    `resume_from_checkpoints` is set to `True`.

    This assumes that points spread from ridges symmetrically, with the exception of
    large ridge jumps at successive timesteps. Therefore, z-values allocated to ridge-emerging
    points will appear symmetrical until changes in spreading ridge geometries create
    asymmetries.

    In future, this will have a checkpoint save feature so that execution
    (which occurs during preparation for ReconstructByTopologies and can take several hours)
    can be safeguarded against run interruptions.

    Parameters
    ----------
    time : float
        The time at which to resolve ridge points and stage-rotate them off the ridge.

    Returns
    -------
    mor_point_features : FeatureCollection
        All ridge seed points that have emerged from all ridge topologies at `time`.
        These points have spread by being slightly rotated away from
        ridge locations at `time`.

    References
    ----------
    get_mid_ocean_ridge_seedpoints() has been adapted from
    https://github.com/siwill22/agegrid-0.1/blob/master/automatic_age_grid_seeding.py#L117.
    """

    # If we mustn't overwrite existing files in the `save_directory`, check the status of MOR seeding
    # to know where to start/continue seeding
    if self.resume_from_checkpoints:
        # Check the last MOR seedpoint gpmlz file that was built
        checkpointed_MOR_seedpoints = [
            s.split("/")[-1]
            for s in glob.glob(self.save_directory + "/" + "*MOR_plus_one_points*")
        ]
        try:
            # -2 as an index accesses the age (float type), safeguards against identifying numbers in the SeafloorGrid.file_collection string
            last_seed_time = np.sort(
                [
                    float(re.findall(r"\d+", s)[-2])
                    for s in checkpointed_MOR_seedpoints
                ]
            )[0]
        # If none were built yet
        except:
            last_seed_time = "nil"

        # If MOR seeding has not started, start it from the top
        if last_seed_time == "nil":
            time_array = self.time_array

        # If the last seed time it could identify is outside the time bounds of the current instance of SeafloorGrid, start
        # from the top (this may happen if we use the same save directory for grids for a new set of times)
        elif last_seed_time not in self.time_array:
            time_array = self.time_array

        # If seeding was done to the min_time, we are finished
        elif last_seed_time == self.min_time:
            return

        # If seeding to `min_time` has been interrupted, resume it at last_masked_time.
        else:
            time_array = np.arange(
                last_seed_time, self.min_time - 0.1, -self.ridge_time_step
            )

    # If we must overwrite all files in `save_directory`, start from `max_time`.
    else:
        time_array = self.time_array

    # Build all continental masks and spreading ridge points (with z values)
    self._get_mid_ocean_ridge_seedpoints(time_array)
    return
def build_all_continental_masks(self)

Create a continental mask to define the ocean basin for all times between min_time and max_time. as well as to use as continental collision boundaries in ReconstructByTopologies.

Notes

Continental masking progress is safeguarded if ever masking is interrupted, provided that resume_from_checkpoints is set to True.

If ReconstructByTopologies identifies a continental collision between oceanic points and the boundaries of this continental mask at time, those points are deleted at time.

The continental mask is also saved to "/continent_mask_{}Ma.nc" as a compressed netCDF4 file if a save_directory is passed. Otherwise, the final grid is returned as a NumPy ndarray object.

Returns

all_continental_masks : list of ndarray
A masked grid per timestep in time_array with 1=continental point, and 0=ocean point, for all points on the full global icosahedral mesh.
Expand source code
def build_all_continental_masks(self):
    """Create a continental mask to define the ocean basin for all times between
    `min_time` and `max_time`.  as well as to use as continental collision
    boundaries in `ReconstructByTopologies`.

    Notes
    -----
    Continental masking progress is safeguarded if ever masking is interrupted,
    provided that `resume_from_checkpoints` is set to `True`.

    If `ReconstructByTopologies` identifies a continental collision
    between oceanic points and the boundaries of this continental
    mask at `time`, those points are deleted at `time`.

    The continental mask is also saved to "/continent_mask_{}Ma.nc" as a
    compressed netCDF4 file if a `save_directory` is passed. Otherwise,
    the final grid is returned as a NumPy ndarray object.

    Returns
    -------
    all_continental_masks : list of ndarray
        A masked grid per timestep in `time_array` with 1=continental point,
        and 0=ocean point, for all points on the full global icosahedral mesh.
    """

    # If we mustn't overwrite existing files in the `save_directory`, check the status
    # of continental masking to know where to start/continue masking
    if self.resume_from_checkpoints:
        # Check the last continental mask that could be built
        checkpointed_continental_masks = [
            s.split("/")[-1]
            for s in glob.glob(self.save_directory + "/" + "*continent_mask*")
        ]
        try:
            # -2 as an index accesses the age (float type), safeguards against identifying numbers in the SeafloorGrid.file_collection string
            last_masked_time = np.sort(
                [
                    float(re.findall(r"\d+", s)[-2])
                    for s in checkpointed_continental_masks
                ]
            )[0]
        # If none were built yet
        except:
            last_masked_time = "nil"

        # If masking has not started, start it from the top
        if last_masked_time == "nil":
            time_array = self.time_array

        # If the last seed time it could identify is outside the time bounds of the current instance of SeafloorGrid, start
        # from the top (this may happen if we use the same save directory for grids for a new set of times)
        elif last_masked_time not in self.time_array:
            time_array = self.time_array

        # If masking was done to the min_time, we are finished
        elif last_masked_time == self.min_time:
            return

        # If masking to `min_time` has been interrupted, resume it at last_masked_time.
        else:
            time_array = np.arange(
                last_masked_time, self.min_time - 0.1, -self.ridge_time_step
            )

    # If we must overwrite all files in `save_directory`, start from `max_time`.
    else:
        time_array = self.time_array

    # Build all continental masks and spreading ridge points (with z values)
    self._create_continental_mask(time_array)
    return
def create_initial_ocean_seed_points(self)

Create the initial ocean basin seed point domain (at max_time only) using Stripy's icosahedral triangulation with the specified self.refinement_levels.

The ocean mesh starts off as a global-spanning Stripy icosahedral mesh. create_initial_ocean_seed_points passes the automatically-resolved-to-current-time continental polygons from the PlotTopologies_object's continents attribute (which can be from a COB terrane file or a continental polygon file) into Plate Tectonic Tools' point-in-polygon routine. It identifies ocean basin points that lie: * outside the polygons (for the ocean basin point domain) * inside the polygons (for the continental mask)

Points from the mesh outside the continental polygons make up the ocean basin seed point mesh. The masked mesh is outputted as a compressed GPML (GPMLZ) file with the filename: "ocean_basin_seed_points_{}Ma.gpmlz" if a save_directory is passed. Otherwise, the mesh is returned as a pyGPlates FeatureCollection object.

Notes

This point mesh represents ocean basin seafloor that was produced before SeafloorGrid.max_time, and thus has unknown properties like valid time and spreading rate. As time passes, the plate reconstruction model sees points emerging from MORs. These new points spread to occupy the ocean basins, moving the initial filler points closer to subduction zones and continental polygons with which they can collide. If a collision is detected by PlateReconstructions ReconstructByTopologies object, these points are deleted.

Ideally, if a reconstruction tree spans a large time range, all initial mesh points would collide with a continent or be subducted, leaving behind a mesh of well-defined MOR-emerged ocean basin points that data can be attributed to. However, some of these initial points situated close to contiental boundaries are retained through time - these form point artefacts with anomalously high ages. Even deep-time plate models (e.g. 1 Ga) will have these artefacts - removing them would require more detail to be added to the reconstruction model.

Returns

ocean_basin_point_mesh : FeatureCollection of pygplates.MultiPointOnSphere
A feature collection of point objects on the ocean basin.
Expand source code
def create_initial_ocean_seed_points(self):
    """Create the initial ocean basin seed point domain (at `max_time` only)
    using Stripy's icosahedral triangulation with the specified
    `self.refinement_levels`.

    The ocean mesh starts off as a global-spanning Stripy icosahedral mesh.
    `create_initial_ocean_seed_points` passes the automatically-resolved-to-current-time
    continental polygons from the `PlotTopologies_object`'s `continents` attribute
    (which can be from a COB terrane file or a continental polygon file) into
    Plate Tectonic Tools' point-in-polygon routine. It identifies ocean basin points
    that lie:
    * outside the polygons (for the ocean basin point domain)
    * inside the polygons (for the continental mask)

    Points from the mesh outside the continental polygons make up the ocean basin seed
    point mesh. The masked mesh is outputted as a compressed GPML (GPMLZ) file with
    the filename: "ocean_basin_seed_points_{}Ma.gpmlz" if a `save_directory` is passed.
    Otherwise, the mesh is returned as a pyGPlates FeatureCollection object.

    Notes
    -----
    This point mesh represents ocean basin seafloor that was produced
    before `SeafloorGrid.max_time`, and thus has unknown properties like valid
    time and spreading rate. As time passes, the plate reconstruction model sees
    points emerging from MORs. These new points spread to occupy the ocean basins,
    moving the initial filler points closer to subduction zones and continental
    polygons with which they can collide. If a collision is detected by
    `PlateReconstruction`s `ReconstructByTopologies` object, these points are deleted.

    Ideally, if a reconstruction tree spans a large time range, **all** initial mesh
    points would collide with a continent or be subducted, leaving behind a mesh of
    well-defined MOR-emerged ocean basin points that data can be attributed to.
    However, some of these initial points situated close to contiental boundaries are
    retained through time - these form point artefacts with anomalously high ages. Even
    deep-time plate models (e.g. 1 Ga) will have these artefacts - removing them would
    require more detail to be added to the reconstruction model.

    Returns
    -------
    ocean_basin_point_mesh : pygplates.FeatureCollection of pygplates.MultiPointOnSphere
        A feature collection of point objects on the ocean basin.
    """

    if self.continent_mask_filename is None:
        # Ensure COB terranes at max time have reconstruction IDs and valid times
        COB_polygons = ensure_polygon_geometry(
            self._PlotTopologies_object.continents,
            self.rotation_model,
            self._max_time,
        )

        # zval is a binary array encoding whether a point
        # coordinate is within a COB terrane polygon or not.
        # Use the icosahedral mesh MultiPointOnSphere attribute
        _, ocean_basin_point_mesh, zvals = point_in_polygon_routine(
            self.icosahedral_multi_point, COB_polygons
        )

        # Plates to partition with
        plate_partitioner = pygplates.PlatePartitioner(
            COB_polygons,
            self.rotation_model,
        )

        # Plate partition the ocean basin points
        meshnode_feature = pygplates.Feature(
            pygplates.FeatureType.create_from_qualified_string("gpml:MeshNode")
        )
        meshnode_feature.set_geometry(
            ocean_basin_point_mesh
            # multi_point
        )
        ocean_basin_meshnode = pygplates.FeatureCollection(meshnode_feature)

        paleogeography = plate_partitioner.partition_features(
            ocean_basin_meshnode,
            partition_return=pygplates.PartitionReturn.separate_partitioned_and_unpartitioned,
            properties_to_copy=[pygplates.PropertyName.gpml_shapefile_attributes],
        )
        ocean_points = paleogeography[1]  # Separate those inside polygons
        continent_points = paleogeography[0]  # Separate those outside polygons

    # If a set of continent masks was passed, we can use max_time's continental
    # mask to build the initial profile of seafloor age.
    else:
        max_time_cont_mask = grids.Raster(
            self.continent_mask_filename.format(self._max_time)
        )
        # If the input grid is at 0.5 degree uniform spacing, then the input
        # grid is 7x more populated than a 6-level stripy icosahedral mesh and
        # using this resolution for the initial ocean mesh will dramatically slow down
        # reconstruction by topologies.
        # Scale down the resolution based on the input mask resolution
        # (percentage was found in __init__.)
        max_time_cont_mask.resize(
            int(max_time_cont_mask.shape[0] * self.percentage),
            int(max_time_cont_mask.shape[1] * self.percentage),
            inplace=True,
        )

        lat = np.linspace(-90, 90, max_time_cont_mask.shape[0])
        lon = np.linspace(-180, 180, max_time_cont_mask.shape[1])

        llon, llat = np.meshgrid(lon, lat)

        mask_inds = np.where(max_time_cont_mask.data.flatten() == 0)
        mask_vals = max_time_cont_mask.data.flatten()
        mask_lon = llon.flatten()[mask_inds]
        mask_lat = llat.flatten()[mask_inds]

        ocean_pt_feature = pygplates.Feature()
        ocean_pt_feature.set_geometry(
            pygplates.MultiPointOnSphere(zip(mask_lat, mask_lon))
        )
        ocean_points = [ocean_pt_feature]

    # Now that we have ocean points...
    # Determine age of ocean basin points using their proximity to MOR features
    # and an assumed globally-uniform ocean basin mean spreading rate.
    # We need resolved topologies at the `max_time` to pass into the proximity
    # function
    resolved_topologies = []
    shared_boundary_sections = []
    pygplates.resolve_topologies(
        self.topology_features,
        self.rotation_model,
        resolved_topologies,
        self._max_time,
        shared_boundary_sections,
    )
    pX, pY, pZ = tools.find_distance_to_nearest_ridge(
        resolved_topologies,
        shared_boundary_sections,
        ocean_points,
    )

    # Divide spreading rate by 2 to use half the mean spreading rate
    pAge = np.array(pZ) / (self.initial_ocean_mean_spreading_rate / 2.0)

    initial_ocean_point_features = []
    initial_ocean_multipoints = []

    for point in zip(pX, pY, pAge):
        point_feature = pygplates.Feature()
        point_feature.set_geometry(pygplates.PointOnSphere(point[1], point[0]))

        # Add 'time' to the age at the time of computation, to get the valid time in Ma
        point_feature.set_valid_time(point[2] + self._max_time, -1)

        # For now: custom zvals are added as shapefile attributes - will attempt pandas data frames
        # point_feature = set_shapefile_attribute(point_feature, self.initial_ocean_mean_spreading_rate, "SPREADING_RATE")  # Seems like static data
        initial_ocean_point_features.append(point_feature)
        initial_ocean_multipoints.append(point_feature.get_geometry())

    # print(initial_ocean_point_features)
    multi_point_feature = pygplates.MultiPointOnSphere(initial_ocean_multipoints)

    basename = "ocean_basin_seed_points_{}_RLs_{}Ma.gpmlz".format(
        self.refinement_levels,
        self._max_time,
    )
    if self.file_collection is not None:
        basename = "{}_{}".format(self.file_collection, basename)
    output_filename = os.path.join(self.save_directory, basename)
    initial_ocean_feature_collection = pygplates.FeatureCollection(
        initial_ocean_point_features
    )
    initial_ocean_feature_collection.write(output_filename)

    # Collect all point feature data into a pandas dataframe
    self._collect_point_data_in_dataframe(
        initial_ocean_feature_collection,
        np.array(
            [self.initial_ocean_mean_spreading_rate] * len(pX)
        ),  # for now, spreading rate is one zvalue for initial ocean points. will other zvalues need to have a generalised workflow?
        self._max_time,
    )

    return (
        pygplates.FeatureCollection(initial_ocean_point_features),
        multi_point_feature,
    )
def lat_lon_z_to_netCDF(self, zval_name, time_arr=None, unmasked=False, nprocs=1)

Produce a netCDF4 grid of a z-value identified by its zval_name for a given time range in time_arr.

Seafloor age can be gridded by passing zval_name as SEAFLOOR_AGE, and spreading rate can be gridded with SPREADING_RATE.

Saves all grids to compressed netCDF format in the attributed directory. Grids can be read into ndarray format using read_netcdf_grid().

Parameters

zval_name : str
A string identifiers for a column in the ReconstructByTopologies gridding input files.
time_arr : list of float, default None
A time range to turn lons, lats and z-values into netCDF4 grids. If not provided, time_arr defaults to the full time_array provided to SeafloorGrids.
unmasked : bool, default False
Save unmasked grids, in addition to masked versions.
nprocs : int, defaullt 1
Number of processes to use for certain operations (requires joblib). Passed to joblib.Parallel, so -1 means all available processes.
Expand source code
def lat_lon_z_to_netCDF(
    self,
    zval_name,
    time_arr=None,
    unmasked=False,
    nprocs=1,
):
    """Produce a netCDF4 grid of a z-value identified by its `zval_name` for a
    given time range in `time_arr`.

    Seafloor age can be gridded by passing `zval_name` as `SEAFLOOR_AGE`, and spreading
    rate can be gridded with `SPREADING_RATE`.

    Saves all grids to compressed netCDF format in the attributed directory. Grids
    can be read into ndarray format using `gplately.grids.read_netcdf_grid()`.

    Parameters
    ----------
    zval_name : str
        A string identifiers for a column in the ReconstructByTopologies gridding
        input files.
    time_arr : list of float, default None
        A time range to turn lons, lats and z-values into netCDF4 grids. If not provided,
        `time_arr` defaults to the full `time_array` provided to `SeafloorGrids`.
    unmasked : bool, default False
        Save unmasked grids, in addition to masked versions.
    nprocs : int, defaullt 1
        Number of processes to use for certain operations (requires joblib).
        Passed to `joblib.Parallel`, so -1 means all available processes.
    """

    parallel = None
    nprocs = int(nprocs)
    if nprocs != 1:
        try:
            from joblib import Parallel

            parallel = Parallel(nprocs)
        except ImportError:
            warnings.warn(
                "Could not import joblib; falling back to serial execution"
            )

    # User can put any time array within SeafloorGrid bounds, but if none
    # is provided, it defaults to the attributed time array
    if time_arr is None:
        time_arr = self.time_array

    if parallel is None:
        for time in time_arr:
            _lat_lon_z_to_netCDF_time(
                time=time,
                zval_name=zval_name,
                file_collection=self.file_collection,
                save_directory=self.save_directory,
                total_column_headers=self.total_column_headers,
                extent=self.extent,
                resX=self.spacingX,
                resY=self.spacingY,
                unmasked=unmasked,
                continent_mask_filename=self.continent_mask_filename,
            )
    else:
        from joblib import delayed

        parallel(
            delayed(_lat_lon_z_to_netCDF_time)(
                time=time,
                zval_name=zval_name,
                file_collection=self.file_collection,
                save_directory=self.save_directory,
                total_column_headers=self.total_column_headers,
                extent=self.extent,
                resX=self.spacingX,
                resY=self.spacingY,
                unmasked=unmasked,
                continent_mask_filename=self.continent_mask_filename,
            )
            for time in time_arr
        )
def prepare_for_reconstruction_by_topologies(self)

Prepare three main auxiliary files for seafloor data gridding: * Initial ocean seed points (at max_time) * Continental masks (from max_time to min_time) * MOR points (from max_time to min_time)

Returns lists of all attributes for the initial ocean point mesh and all ridge points for all times in the reconstruction time array.

Expand source code
def prepare_for_reconstruction_by_topologies(self):
    """Prepare three main auxiliary files for seafloor data gridding:
    * Initial ocean seed points (at `max_time`)
    * Continental masks (from `max_time` to `min_time`)
    * MOR points (from `max_time` to `min_time`)

    Returns lists of all attributes for the initial ocean point mesh and
    all ridge points for all times in the reconstruction time array.
    """

    # INITIAL OCEAN SEED POINT MESH ----------------------------------------------------
    (
        initial_ocean_seed_points,
        initial_ocean_seed_points_mp,
    ) = self.create_initial_ocean_seed_points()
    print("Finished building initial_ocean_seed_points!")

    # MOR SEED POINTS AND CONTINENTAL MASKS --------------------------------------------

    # The start time for seeding is controlled by whether the overwrite_existing_gridding_inputs
    # parameter is set to `True` (in which case the start time is `max_time`). If it is `False`
    # and;
    # - a run of seeding and continental masking was interrupted, and ridge points were
    # checkpointed at n Ma, seeding resumes at n-1 Ma until `min_time` or another interruption
    # occurs;
    # - seeding was completed but the subsequent gridding input creation was interrupted,
    # seeding is assumed completed and skipped. The workflow automatically proceeds to re-gridding.

    if self.continent_mask_filename is None:
        self.build_all_continental_masks()
    else:
        print(
            "Continent masks passed to SeafloorGrid - skipping continental mask generation!"
        )

    self.build_all_MOR_seedpoints()

    # ALL-TIME POINTS -----------------------------------------------------
    # Extract all feature attributes for all reconstruction times into lists
    active_points = []
    appearance_time = []
    birth_lat = []  # latitude_of_crust_formation
    prev_lat = []
    prev_lon = []

    # Extract point feature attributes from MOR seed points
    all_mor_features = []
    zvalues = np.empty((0, len(self.zval_names)))
    for time in self.time_array:
        # If we're at the maximum time, start preparing points from the initial ocean mesh
        # as well as their z values
        if time == self._max_time:
            for feature in initial_ocean_seed_points:
                active_points.append(feature.get_geometry())
                appearance_time.append(feature.get_valid_time()[0])
                birth_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                prev_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                prev_lon.append(feature.get_geometry().to_lat_lon_list()[0][1])

            curr_zvalues = self._extract_zvalues_from_npz_to_ndarray(
                initial_ocean_seed_points, time
            )
            zvalues = np.concatenate((zvalues, curr_zvalues), axis=0)

        # Otherwise, we'd be preparing MOR points and their z values
        else:
            # GPMLZ file of MOR seedpoints
            basename = "MOR_plus_one_points_{:0.2f}.gpmlz".format(time)
            if self.file_collection is not None:
                basename = "{}_{}".format(self.file_collection, basename)
            filename = os.path.join(self.save_directory, basename)
            features = pygplates.FeatureCollection(filename)

            for feature in features:
                if feature.get_valid_time()[0] < self.time_array[0]:
                    active_points.append(feature.get_geometry())
                    appearance_time.append(feature.get_valid_time()[0])
                    birth_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                    prev_lat.append(feature.get_geometry().to_lat_lon_list()[0][0])
                    prev_lon.append(feature.get_geometry().to_lat_lon_list()[0][1])

            # COLLECT NDARRAY OF ALL ZVALUES IN THIS TIMESTEP ------------------
            curr_zvalues = self._extract_zvalues_from_npz_to_ndarray(features, time)
            zvalues = np.concatenate((zvalues, curr_zvalues), axis=0)

    return active_points, appearance_time, birth_lat, prev_lat, prev_lon, zvalues
def reconstruct_by_topologies(self)

Obtain all active ocean seed points at time - these are points that have not been consumed at subduction zones or have not collided with continental polygons.

All active points' latitudes, longitues, seafloor ages, spreading rates and all other general z-values are saved to a gridding input file (.npz).

Expand source code
def reconstruct_by_topologies(self):
    """Obtain all active ocean seed points at `time` - these are
    points that have not been consumed at subduction zones or have not
    collided with continental polygons.

    All active points' latitudes, longitues, seafloor ages, spreading rates and all
    other general z-values are saved to a gridding input file (.npz).
    """
    print("Preparing all initial files...")

    # Obtain all info from the ocean seed points and all MOR points through time, store in
    # arrays
    (
        active_points,
        appearance_time,
        birth_lat,
        prev_lat,
        prev_lon,
        zvalues,
    ) = self.prepare_for_reconstruction_by_topologies()

    ####  Begin reconstruction by topology process:
    # Indices for all points (`active_points`) that have existed from `max_time` to `min_time`.
    point_id = range(len(active_points))

    # Specify the default collision detection region as subduction zones
    default_collision = reconstruction._DefaultCollision(
        feature_specific_collision_parameters=[
            (
                pygplates.FeatureType.gpml_subduction_zone,
                self.subduction_collision_parameters,
            )
        ]
    )
    # In addition to the default subduction detection, also detect continental collisions
    # Use the input continent mask if it is provided.
    if self.continent_mask_filename is not None:
        collision_spec = reconstruction._ContinentCollision(
            # This filename string should not have a time formatted into it - this is
            # taken care of later.
            self.continent_mask_filename,
            default_collision,
            verbose=False,
        )
    else:
        # If a continent mask is not provided, use the ones made.
        mask_basename = r"continent_mask_{}Ma.nc"
        if self.file_collection is not None:
            mask_basename = str(self.file_collection) + "_" + mask_basename
        mask_template = os.path.join(self.save_directory, mask_basename)
        collision_spec = reconstruction._ContinentCollision(
            mask_template,
            default_collision,
            verbose=False,
        )

    # Call the reconstruct by topologies object
    topology_reconstruction = reconstruction._ReconstructByTopologies(
        self.rotation_model,
        self.topology_features,
        self._max_time,
        self.min_time,
        self.ridge_time_step,
        active_points,
        point_begin_times=appearance_time,
        detect_collisions=collision_spec,
    )
    # Initialise the reconstruction.
    topology_reconstruction.begin_reconstruction()

    # Loop over the reconstruction times until the end of the reconstruction time span, or until
    # all points have entered their valid time range *and* either exited their time range or
    # have been deactivated (subducted forward in time or consumed by MOR backward in time).
    reconstruction_data = []
    while True:
        print(
            "Reconstruct by topologies: working on time {:0.2f} Ma".format(
                topology_reconstruction.get_current_time()
            )
        )

        # NOTE:
        # topology_reconstruction.get_active_current_points() and topology_reconstruction.get_all_current_points()
        # are different. The former is a subset of the latter, and it represents all points at the timestep that
        # have not collided with a continental or subduction boundary. The remainders in the latter are inactive
        # (NoneType) points, which represent the collided points.

        # We need to access active point data from topology_reconstruction.get_all_current_points() because it has
        # the same length as the list of all initial ocean points and MOR seed points that have ever emerged from
        # spreading ridge topologies through `max_time` to `min_time`. Therefore, it protects the time and space
        # order in which all MOR points through time were seeded by pyGPlates. At any given timestep, not all these
        # points will be active, but their indices are retained. Thus, z value allocation, point latitudes and
        # longitudes of active points will be correctly indexed if taking it from
        # topology_reconstruction.get_all_current_points().
        curr_points = topology_reconstruction.get_active_current_points()
        curr_points_including_inactive = (
            topology_reconstruction.get_all_current_points()
        )

        # Collect latitudes and longitudes of currently ACTIVE points in the ocean basin
        curr_lat_lon_points = [point.to_lat_lon() for point in curr_points]

        if curr_lat_lon_points:
            # Get the number of active points at this timestep.
            num_current_points = len(curr_points)

            # ndarray to fill with active point lats, lons and zvalues
            # FOR NOW, the number of gridding input columns is 6:
            # 0 = longitude
            # 1 = latitude
            # 2 = seafloor age
            # 3 = birth latitude snapshot
            # 4 = point id

            # 5 for the default gridding columns above, plus additional zvalues added next
            total_number_of_columns = 5 + len(self.zval_names)
            gridding_input_data = np.empty(
                [num_current_points, total_number_of_columns]
            )

            # Lons and lats are first and second columns of the ndarray respectively
            gridding_input_data[:, 1], gridding_input_data[:, 0] = zip(
                *curr_lat_lon_points
            )

            # NOTE: We need a single index to access data from curr_points_including_inactive AND allocate
            # this data to an ndarray with a number of rows equal to num_current_points. This index will
            # append +1 after each loop through curr_points_including_inactive.
            i = 0

            # Get indices and points of all points at `time`, both active and inactive (which are NoneType points that
            # have undergone continental collision or subduction at `time`).
            for point_index, current_point in enumerate(
                curr_points_including_inactive
            ):
                # Look at all active points (these have not collided with a continent or trench)
                if current_point is not None:
                    # Seafloor age
                    gridding_input_data[i, 2] = (
                        appearance_time[point_index]
                        - topology_reconstruction.get_current_time()
                    )
                    # Birth latitude (snapshot)
                    gridding_input_data[i, 3] = birth_lat[point_index]
                    # Point ID (snapshot)
                    gridding_input_data[i, 4] = point_id[
                        point_index
                    ]  # The ID of a corresponding point from the original list of all MOR-resolved points

                    # GENERAL Z-VALUE ALLOCATION
                    # Z values are 1st index onwards; 0th belongs to the point feature ID (thus +1)
                    for j in range(len(self.zval_names)):
                        # Adjusted index - and we have to add j to 5 to account for lat, lon, age, birth lat and point ID,
                        adjusted_index = 5 + j

                        # Spreading rate would be first
                        # Access current zval from the master list of all zvalues for all points that ever existed in time_array
                        gridding_input_data[i, adjusted_index] = zvalues[
                            point_index, j
                        ]

                    # Go to the next active point
                    i += 1

            gridding_input_dictionary = {}

            for i in list(range(total_number_of_columns)):
                gridding_input_dictionary[self.total_column_headers[i]] = [
                    list(j) for j in zip(*gridding_input_data)
                ][i]
                data_to_store = [
                    gridding_input_dictionary[i] for i in gridding_input_dictionary
                ]

            gridding_input_basename = "gridding_input_{:0.1f}Ma".format(
                topology_reconstruction.get_current_time()
            )
            if self.file_collection is not None:
                gridding_input_basename = "{}_{}".format(
                    self.file_collection,
                    gridding_input_basename,
                )
            gridding_input_filename = os.path.join(
                self.save_directory, gridding_input_basename
            )
            np.savez_compressed(gridding_input_filename, *data_to_store)

        if not topology_reconstruction.reconstruct_to_next_time():
            break

    print(
        "Reconstruction done for {}!".format(
            topology_reconstruction.get_current_time()
        )
    )
    # return reconstruction_data
def update_time(self, max_time)
Expand source code
def update_time(self, max_time):
    self._max_time = float(max_time)
    self._PlotTopologies_object.time = float(max_time)