Module gplately.reconstruction

This sub-module contains tools that wrap up pyGPlates and Plate Tectonic Tools functionalities for reconstructing features, working with point data, and calculating plate velocities at specific geological times.

Functions

def reconstruct_points(rotation_features_or_model, topology_features, reconstruction_begin_time, reconstruction_end_time, reconstruction_time_interval, points, point_begin_times=None, point_end_times=None, point_plate_ids=None, detect_collisions=<gplately.reconstruction._DefaultCollision object>)

Function to reconstruct points using the ReconstructByTopologies class below.

For description of parameters see the ReconstructByTopologies class below.

Classes

class PlateReconstruction (rotation_model, topology_features=None, static_polygons=None, anchor_plate_id=None, plate_model_name: str = 'Nemo')

The PlateReconstruction class contains methods to reconstruct topology features to specific geological times given a rotation_model, a set of topology_features and a set of static_polygons. Topological plate velocity data at specific geological times can also be calculated from these reconstructed features.

Attributes

rotation_model : pygplates.RotationModel
A rotation model to query equivalent and/or relative topological plate rotations from a time in the past relative to another time in the past or to present day.
topology_features : pygplates.FeatureCollection, default None
Topological features like trenches, ridges and transforms.
static_polygons : pygplates.FeatureCollection, default None
Present-day polygons whose shapes do not change through geological time when reconstructed.
anchor_plate_id : int
Anchor plate ID for reconstruction.

Parameters

rotation_model : str/os.PathLike, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>, or instance of <pygplates.RotationModel>
A rotation model to query equivalent and/or relative topological plate rotations from a time in the past relative to another time in the past or to present day. Can be provided as a rotation filename, or rotation feature collection, or rotation feature, or sequence of rotation features, or a sequence (eg, a list or tuple) of any combination of those four types.
topology_features : str/os.PathLike, or a sequence (eg, list or tuple) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>, default None
Reconstructable topological features like trenches, ridges and transforms. Can be provided as an optional topology-feature filename, or sequence of features, or a single feature.
static_polygons : str/os.PathLike, or instance of <pygplates.Feature>, or sequence of <pygplates.Feature>,or an instance of <pygplates.FeatureCollection>, default None
Present-day polygons whose shapes do not change through geological time. They are used to cookie-cut dynamic polygons into identifiable topological plates (assigned an ID) according to their present-day locations. Can be provided as a static polygon feature collection, or optional filename, or a single feature, or a sequence of features.
anchor_plate_id : int, optional
Default anchor plate ID for reconstruction. If not specified then uses the default anchor plate of rotation_model if it's a pygplates.RotationModel (otherwise uses zero).
Expand source code
class PlateReconstruction(object):
    """The `PlateReconstruction` class contains methods to reconstruct topology features to specific
    geological times given a `rotation_model`, a set of `topology_features` and a set of
    `static_polygons`. Topological plate velocity data at specific geological times can also be
    calculated from these reconstructed features.

    Attributes
    ----------
    rotation_model : `pygplates.RotationModel`
        A rotation model to query equivalent and/or relative topological plate rotations
        from a time in the past relative to another time in the past or to present day.
    topology_features : `pygplates.FeatureCollection`, default None
        Topological features like trenches, ridges and transforms.
    static_polygons : `pygplates.FeatureCollection`, default None
        Present-day polygons whose shapes do not change through geological time when reconstructed.
    anchor_plate_id : int
        Anchor plate ID for reconstruction.
    """

    def __init__(
        self,
        rotation_model,
        topology_features=None,
        static_polygons=None,
        anchor_plate_id=None,
        plate_model_name: str = "Nemo",
    ):
        """
        Parameters
        ----------
        rotation_model : str/`os.PathLike`, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>, or instance of <pygplates.RotationModel>
            A rotation model to query equivalent and/or relative topological plate rotations
            from a time in the past relative to another time in the past or to present day. Can be
            provided as a rotation filename, or rotation feature collection, or rotation feature, or
            sequence of rotation features, or a sequence (eg, a list or tuple) of any combination of
            those four types.
        topology_features : str/`os.PathLike`, or a sequence (eg, `list` or `tuple`) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>, default None
            Reconstructable topological features like trenches, ridges and transforms. Can be provided
            as an optional topology-feature filename, or sequence of features, or a single feature.
        static_polygons : str/`os.PathLike`, or instance of <pygplates.Feature>, or sequence of <pygplates.Feature>,or an instance of <pygplates.FeatureCollection>, default None
            Present-day polygons whose shapes do not change through geological time. They are
            used to cookie-cut dynamic polygons into identifiable topological plates (assigned
            an ID) according to their present-day locations. Can be provided as a static polygon feature
            collection, or optional filename, or a single feature, or a sequence of
            features.
        anchor_plate_id : int, optional
            Default anchor plate ID for reconstruction.
            If not specified then uses the default anchor plate of `rotation_model` if it's a `pygplates.RotationModel` (otherwise uses zero).
        """
        # Add a warning if the rotation_model is empty
        if not rotation_model:
            logger.warning(
                "No rotation features were passed to the constructor of PlateReconstruction. The reconstruction will not work. Check your rotation file(s)."
            )

        if hasattr(rotation_model, "reconstruction_identifier"):
            self.name = rotation_model.reconstruction_identifier
        else:
            self.name = None

        if anchor_plate_id is None:
            if isinstance(rotation_model, pygplates.RotationModel):
                # Use the default anchor plate of 'rotation_model'.
                self.rotation_model = rotation_model
            else:
                # Using rotation features/files, so default anchor plate is 0.
                self.rotation_model = pygplates.RotationModel(rotation_model)
        else:
            # User has explicitly specified an anchor plate ID, so let's check it.
            anchor_plate_id = self._check_anchor_plate_id(anchor_plate_id)
            # This works when 'rotation_model' is a RotationModel or rotation features/files.
            self.rotation_model = pygplates.RotationModel(
                rotation_model, default_anchor_plate_id=anchor_plate_id
            )

        self.topology_features = _load_FeatureCollection(topology_features)
        self.static_polygons = _load_FeatureCollection(static_polygons)
        self.plate_model_name = plate_model_name

        # Keep a snapshot of the resolved topologies at its last requested snapshot time (and anchor plate).
        # Also keep a snapshot of the reconstructed static polygons at its the last requested snapshot time (and anchor plate)
        # which, by the way, could be a different snapshot time and anchor plate than the topological snapshot.
        #
        # This avoids having to do unnessary work if the same snapshot time (and anchor plate) is requested again.
        # But if the requested time (or anchor plate) changes then we'll create a new snapshot.
        #
        # Note: Both pygplates.TopologicalSnapshot and pygplates.ReconstructSnapshot can be pickled.
        self._topological_snapshot = None
        self._static_polygons_snapshot = None

    def __getstate__(self):
        state = self.__dict__.copy()

        # Remove the unpicklable entries.
        #
        # This includes pygplates reconstructed feature geometries and resolved topological geometries.
        # Note: PyGPlates features and features collections (and rotation models) can be pickled though.
        #

        return state

    def __setstate__(self, state):
        self.__dict__.update(state)

        # Restore the unpicklable entries.
        #
        # This includes pygplates reconstructed feature geometries and resolved topological geometries.
        # Note: PyGPlates features and features collections (and rotation models) can be pickled though.
        #

    @property
    def anchor_plate_id(self):
        """Anchor plate ID for reconstruction. Must be an integer >= 0."""
        # The default anchor plate comes from the RotationModel.
        return self.rotation_model.get_default_anchor_plate_id()

    @anchor_plate_id.setter
    def anchor_plate_id(self, anchor_plate):
        # Note: Caller cannot specify None when setting the anchor plate.
        anchor_plate = self._check_anchor_plate_id(anchor_plate)
        # Only need to update if the anchor plate changed.
        if anchor_plate != self.anchor_plate_id:
            # Update the RotationModel (which is where the anchor plate is stored).
            # This keeps the same rotation model but just changes the anchor plate.
            self.rotation_model = pygplates.RotationModel(
                self.rotation_model, default_anchor_plate_id=anchor_plate
            )

    @staticmethod
    def _check_anchor_plate_id(id):
        id = int(id)
        if id < 0:
            raise ValueError("Invalid anchor plate ID: {}".format(id))
        return id

    def _check_topology_features(self, *, include_topological_slab_boundaries=True):
        if self.topology_features is None:
            raise ValueError(
                "Topology features have not been set in this PlateReconstruction."
            )

        # If not including topological slab boundaries then remove them.
        if not include_topological_slab_boundaries:
            return [
                feature
                for feature in self.topology_features
                if feature.get_feature_type()
                != pygplates.FeatureType.gpml_topological_slab_boundary
            ]

        return self.topology_features

    def topological_snapshot(
        self, time, *, anchor_plate_id=None, include_topological_slab_boundaries=True
    ):
        """Create a snapshot of resolved topologies at the specified reconstruction time.

        This returns a [pygplates.TopologicalSnapshot](https://www.gplates.org/docs/pygplates/generated/pygplates.TopologicalSnapshot)
        from which you can extract resolved topologies, calculate velocities at point locations, calculate plate boundary statistics, etc.

        Parameters
        ----------
        time : float, int or pygplates.GeoTimeInstant
            The geological time at which to create the topological snapshot.
        anchor_plate_id : int, optional
            The anchored plate id to use when resolving topologies.
            If not specified then uses the current anchor plate (`anchor_plate_id` attribute).
        include_topological_slab_boundaries : bool, default=True
            Include topological boundary features of type `gpml:TopologicalSlabBoundary`.
            By default all features passed into constructor (`__init__`) are included in the snapshot.
            However setting this to False is useful when you're only interested in *plate* boundaries.

        Returns
        -------
        topological_snapshot : `pygplates.TopologicalSnapshot`
            The [topological snapshot](https://www.gplates.org/docs/pygplates/generated/pygplates.TopologicalSnapshot)
            at the specified `time` (and anchor plate).

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        """
        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        # Only need to create a new snapshot if we don't have one, or if any of the following have changed since the last snapshot:
        # - the reconstruction time,
        # - the anchor plate,
        # - whether to include topological slab boundaries or not.
        if (
            self._topological_snapshot is None
            # last snapshot time...
            or self._topological_snapshot.get_reconstruction_time()
            # use pygplates.GeoTimeInstant to get a numerical tolerance in floating-point time comparison...
            != pygplates.GeoTimeInstant(time)
            # last snapshot anchor plate...
            or self._topological_snapshot.get_rotation_model().get_default_anchor_plate_id()
            != anchor_plate_id
            # whether last snapshot included topological slab boundaries...
            or self._topological_snapshot_includes_topological_slab_boundaries
            != include_topological_slab_boundaries
        ):
            # Create snapshot for current parameters.
            self._topological_snapshot = pygplates.TopologicalSnapshot(
                self._check_topology_features(
                    include_topological_slab_boundaries=include_topological_slab_boundaries
                ),
                self.rotation_model,
                time,
                anchor_plate_id=anchor_plate_id,
            )

            # Parameters used for the last snapshot.
            #
            # The snapshot time and anchor plate are stored in the snapshot itself (so not added here).
            #
            # Note: These don't need to be initialised in '__init__()' as long as it sets "self._topological_snapshot = None".
            #
            # Note: If we add more parameters then perhaps create a single nested private (leading '_') class for them.
            self._topological_snapshot_includes_topological_slab_boundaries = (
                include_topological_slab_boundaries
            )

        return self._topological_snapshot

    def _check_static_polygons(self):
        # Check we have static polygons.
        #
        # Currently all available models have them, but it's possible for a user to create a PlateReconstruction without them.
        if self.static_polygons is None:
            raise ValueError(
                "Static polygons have not been set in this PlateReconstruction."
            )

        return self.static_polygons

    def static_polygons_snapshot(self, time, *, anchor_plate_id=None):
        """Create a reconstructed snapshot of the static polygons at the specified reconstruction time.

        This returns a [pygplates.ReconstructSnapshot](https://www.gplates.org/docs/pygplates/generated/pygplates.ReconstructSnapshot)
        from which you can extract reconstructed static polygons, find reconstructed polygons containing points and calculate velocities at point locations, etc.

        Parameters
        ----------
        time : float, int or pygplates.GeoTimeInstant
            The geological time at which to create the reconstructed static polygons snapshot.
        anchor_plate_id : int, optional
            The anchored plate id to use when reconstructing the static polygons.
            If not specified then uses the current anchor plate (`anchor_plate_id` attribute).

        Returns
        -------
        static_polygons_snapshot : `pygplates.ReconstructSnapshot`
            The reconstructed static polygons [snapshot](https://www.gplates.org/docs/pygplates/generated/pygplates.ReconstructSnapshot)
            at the specified `time` (and anchor plate).

        Raises
        ------
        ValueError
            If static polygons have not been set in this `PlateReconstruction`.
        """
        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        # Only need to create a new snapshot if we don't have one, or if any of the following have changed since the last snapshot:
        # - the reconstruction time,
        # - the anchor plate.
        if (
            self._static_polygons_snapshot is None
            # last snapshot time...
            or self._static_polygons_snapshot.get_reconstruction_time()
            # use pygplates.GeoTimeInstant to get a numerical tolerance in floating-point time comparison...
            != pygplates.GeoTimeInstant(time)
            # last snapshot anchor plate...
            or self._static_polygons_snapshot.get_rotation_model().get_default_anchor_plate_id()
            != anchor_plate_id
        ):
            # Create snapshot for current parameters.
            self._static_polygons_snapshot = pygplates.ReconstructSnapshot(
                self._check_static_polygons(),
                self.rotation_model,
                time,
                anchor_plate_id=anchor_plate_id,
            )

        return self._static_polygons_snapshot

    def divergent_convergent_plate_boundaries(
        self,
        time,
        uniform_point_spacing_radians=0.001,
        divergence_velocity_threshold=0.0,
        convergence_velocity_threshold=0.0,
        *,
        first_uniform_point_spacing_radians=None,
        anchor_plate_id=None,
        velocity_delta_time=1.0,
        velocity_delta_time_type=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t,
        velocity_units=pygplates.VelocityUnits.cms_per_yr,
        earth_radius_in_kms=pygplates.Earth.mean_radius_in_kms,
        include_network_boundaries=False,
        include_topological_slab_boundaries=False,
        boundary_section_filter=None,
    ):
        """Samples points uniformly along plate boundaries and calculates statistics at diverging/converging locations at a particular geological time.

        Resolves topologies at `time`, uniformly samples all plate boundaries into points and returns two lists of
        [pygplates.PlateBoundaryStatistic](https://www.gplates.org/docs/pygplates/generated/pygplates.PlateBoundaryStatistic).
        The first list represents sample points where the plates are diverging, and the second where plates are converging.

        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query divergent/convergent plate boundaries.
        uniform_point_spacing_radians : float, default=0.001
            The spacing between uniform points along plate boundaries (in radians).
        divergence_velocity_threshold : float, default=0.0
            Orthogonal (ie, in the direction of boundary normal) velocity threshold for *diverging* sample points.
            Points with an orthogonal *diverging* velocity above this value will be returned in `diverging_data`.
            The default is `0.0` which removes all converging sample points (leaving only diverging points).
            This value can be negative which means a small amount of convergence is allowed for the diverging points.
            The units should match the units of `velocity_units` (eg, if that's cm/yr then this threshold should also be in cm/yr).
        convergence_velocity_threshold : float, default=0.0
            Orthogonal (ie, in the direction of boundary normal) velocity threshold for *converging* sample points.
            Points with an orthogonal *converging* velocity above this value will be returned in `converging_data`.
            The default is `0.0` which removes all diverging sample points (leaving only converging points).
            This value can be negative which means a small amount of divergence is allowed for the converging points.
            The units should match the units of `velocity_units` (eg, if that's cm/yr then this threshold should also be in cm/yr).
        first_uniform_point_spacing_radians : float, optional
            Spacing of first uniform point in each resolved topological section (in radians) - see
            [pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics()](https://www.gplates.org/docs/pygplates/generated/pygplates.topologicalsnapshot#pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics)
            for more details. Defaults to half of `uniform_point_spacing_radians`.
        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute).
        velocity_delta_time : float, default=1.0
            The time delta used to calculate velocities (defaults to 1 Myr).
        velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
            How the two velocity times are calculated relative to `time` (defaults to ``[time + velocity_delta_time, time]``).
        velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.cms_per_yr
            Whether to return velocities in centimetres per year or kilometres per million years (defaults to centimetres per year).
        earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
            Radius of the Earth in kilometres.
            This is only used to calculate velocities (strain rates always use ``pygplates.Earth.equatorial_radius_in_kms``).
        include_network_boundaries : bool, default=False
            Whether to sample along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
        include_topological_slab_boundaries : bool, default=False
            Whether to sample along slab boundaries (features of type `gpml:TopologicalSlabBoundary`).
            By default they are *not* sampled since they are *not* plate boundaries.
        boundary_section_filter
            Same as the ``boundary_section_filter`` argument in
            [pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics()](https://www.gplates.org/docs/pygplates/generated/pygplates.topologicalsnapshot#pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics).
            Defaults to ``None`` (meaning all plate boundaries are included by default).

        Returns
        -------
        diverging_data : list of `pygplates.PlateBoundaryStatistic`
            The results for all uniformly sampled points along plate boundaries that are *diverging* relative to `divergence_threshold`.
            The size of the returned list is equal to the number of sampled points that are *diverging*.
            Each [pygplates.PlateBoundaryStatistic](https://www.gplates.org/docs/pygplates/generated/pygplates.PlateBoundaryStatistic) is guaranteed to have a valid (ie, not ``None``)
            [convergence velocity](https://www.gplates.org/docs/pygplates/generated/pygplates.PlateBoundaryStatistic.html#pygplates.PlateBoundaryStatistic.convergence_velocity).
        converging_data : list of `pygplates.PlateBoundaryStatistic`
            The results for all uniformly sampled points along plate boundaries that are *converging* relative to `convergence_threshold`.
            The size of the returned list is equal to the number of sampled points that are *converging*.
            Each [pygplates.PlateBoundaryStatistic](https://www.gplates.org/docs/pygplates/generated/pygplates.PlateBoundaryStatistic) is guaranteed to have a valid (ie, not ``None``)
            [convergence velocity](https://www.gplates.org/docs/pygplates/generated/pygplates.PlateBoundaryStatistic.html#pygplates.PlateBoundaryStatistic.convergence_velocity).

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.

        Examples
        --------
        To sample diverging/converging points along plate boundaries at 50Ma:

            diverging_data, converging_data = plate_reconstruction.divergent_convergent_plate_boundaries(50)

        To do the same, but restrict converging data to points where orthogonal converging velocities are greater than 0.2 cm/yr
        (with diverging data remaining unchanged with the default 0.0 threshold):

            diverging_data, converging_data = plate_reconstruction.divergent_convergent_plate_boundaries(50,
                    convergence_velocity_threshold=0.2)

        Notes
        -----
        If you want to access all sampled points regardless of their convergence/divergence you can call `topological_snapshot()` and then use it to directly call
        [pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics()](https://www.gplates.org/docs/pygplates/generated/pygplates.topologicalsnapshot#pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics).
        Then you can do your own analysis on the returned data:

            plate_boundary_statistics = plate_reconstruction.topological_snapshot(
                time,
                include_topological_slab_boundaries=False
            ).calculate_plate_boundary_statistics(
                uniform_point_spacing_radians=0.001
            )

            for stat in plate_boundary_statistics:
                if np.isnan(stat.convergence_velocity_orthogonal)
                    continue  # missing left or right plate
                latitude, longitude = stat.boundary_point.to_lat_lon()
        """

        # Generate statistics at uniformly spaced points along plate boundaries.
        plate_boundary_statistics = self.topological_snapshot(
            time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id'
            include_topological_slab_boundaries=include_topological_slab_boundaries,
        ).calculate_plate_boundary_statistics(
            uniform_point_spacing_radians,
            first_uniform_point_spacing_radians=first_uniform_point_spacing_radians,
            velocity_delta_time=velocity_delta_time,
            velocity_delta_time_type=velocity_delta_time_type,
            velocity_units=velocity_units,
            earth_radius_in_kms=earth_radius_in_kms,
            include_network_boundaries=include_network_boundaries,
            boundary_section_filter=boundary_section_filter,
        )

        diverging_point_stats = []
        converging_point_stats = []

        for stat in plate_boundary_statistics:

            # Convergence velocity.
            #
            # Note: We use the 'orthogonal' component of velocity vector.
            convergence_velocity_orthogonal = stat.convergence_velocity_orthogonal
            # Skip current point if missing left or right plate (cannot calculate convergence).
            if np.isnan(convergence_velocity_orthogonal):
                continue

            # Add to diverging points if within the specified divergence velocity threshold.
            if -convergence_velocity_orthogonal >= divergence_velocity_threshold:
                diverging_point_stats.append(stat)

            # Add to converging points if within the specified convergence velocity threshold.
            if convergence_velocity_orthogonal >= convergence_velocity_threshold:
                converging_point_stats.append(stat)

        return diverging_point_stats, converging_point_stats

    def crustal_production_destruction_rate(
        self,
        time,
        uniform_point_spacing_radians=0.001,
        divergence_velocity_threshold_in_cms_per_yr=0.0,
        convergence_velocity_threshold_in_cms_per_yr=0.0,
        *,
        first_uniform_point_spacing_radians=None,
        velocity_delta_time=1.0,
        velocity_delta_time_type=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t,
        include_network_boundaries=False,
        include_topological_slab_boundaries=False,
        boundary_section_filter=None,
    ):
        """Calculates the total crustal production and destruction rates (in km^2/yr) of divergent and convergent plate boundaries at the specified geological time (Ma).

        Resolves topologies at `time` and uniformly samples all plate boundaries into divergent and convergent boundary points.

        Total crustal production (and destruction) rate is then calculated by accumulating divergent (and convergent) orthogonal velocities multiplied by their local boundary lengths.
        Velocities and lengths are scaled using the geocentric radius (at each divergent and convergent sampled point).

        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query divergent/convergent plate boundaries.
        uniform_point_spacing_radians : float, default=0.001
            The spacing between uniform points along plate boundaries (in radians).
        divergence_velocity_threshold_in_cms_per_yr : float, default=0.0
            Orthogonal (ie, in the direction of boundary normal) velocity threshold for *diverging* sample points.
            Points with an orthogonal *diverging* velocity above this value will accumulate crustal *production*.
            The default is `0.0` which removes all converging sample points (leaving only diverging points).
            This value can be negative which means a small amount of convergence is allowed for the diverging points.
            The units should be in cm/yr.
        convergence_velocity_threshold_in_cms_per_yr : float, default=0.0
            Orthogonal (ie, in the direction of boundary normal) velocity threshold for *converging* sample points.
            Points with an orthogonal *converging* velocity above this value will accumulate crustal *destruction*.
            The default is `0.0` which removes all diverging sample points (leaving only converging points).
            This value can be negative which means a small amount of divergence is allowed for the converging points.
            The units should be in cm/yr.
        first_uniform_point_spacing_radians : float, optional
            Spacing of first uniform point in each resolved topological section (in radians) - see
            `divergent_convergent_plate_boundaries()` for more details. Defaults to half of `uniform_point_spacing_radians`.
        velocity_delta_time : float, default=1.0
            The time delta used to calculate velocities (defaults to 1 Myr).
        velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
            How the two velocity times are calculated relative to `time` (defaults to ``[time + velocity_delta_time, time]``).
        include_network_boundaries : bool, default=False
            Whether to sample along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
        include_topological_slab_boundaries : bool, default=False
            Whether to sample along slab boundaries (features of type `gpml:TopologicalSlabBoundary`).
            By default they are *not* sampled since they are *not* plate boundaries.
        boundary_section_filter
            Same as the ``boundary_section_filter`` argument in `divergent_convergent_plate_boundaries()`.
            Defaults to ``None`` (meaning all plate boundaries are included by default).

        Returns
        -------
        total_crustal_production_rate_in_km_2_per_yr : float
            The total rate of crustal *production* at divergent plate boundaries (in km^2/yr) at the specified `time`.
        total_crustal_destruction_rate_in_km_2_per_yr : float
            The total rate of crustal *destruction* at convergent plate boundaries (in km^2/yr) at the specified `time`.

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.

        Examples
        --------
        To calculate total crustal production/destruction along plate boundaries at 50Ma:

            total_crustal_production_rate_in_km_2_per_yr, total_crustal_destruction_rate_in_km_2_per_yr = plate_reconstruction.crustal_production_destruction_rate(50)

        To do the same, but restrict convergence to points where orthogonal converging velocities are greater than 0.2 cm/yr
        (with divergence remaining unchanged with the default 0.0 threshold):

            total_crustal_production_rate_in_km_2_per_yr, total_crustal_destruction_rate_in_km_2_per_yr = plate_reconstruction.crustal_production_destruction_rate(50,
                    convergence_velocity_threshold_in_cms_per_yr=0.2)
        """

        # Generate statistics at uniformly spaced points along plate boundaries.
        diverging_data, converging_data = self.divergent_convergent_plate_boundaries(
            time,
            uniform_point_spacing_radians=uniform_point_spacing_radians,
            divergence_velocity_threshold=divergence_velocity_threshold_in_cms_per_yr,
            convergence_velocity_threshold=convergence_velocity_threshold_in_cms_per_yr,
            first_uniform_point_spacing_radians=first_uniform_point_spacing_radians,
            velocity_delta_time=velocity_delta_time,
            velocity_delta_time_type=velocity_delta_time_type,
            velocity_units=pygplates.VelocityUnits.cms_per_yr,
            earth_radius_in_kms=pygplates.Earth.mean_radius_in_kms,
            include_network_boundaries=include_network_boundaries,
            include_topological_slab_boundaries=include_topological_slab_boundaries,
            boundary_section_filter=boundary_section_filter,
        )

        # Total crustal production rate at divergent plate boundaries.
        total_crustal_production_rate = 0.0
        for stat in diverging_data:
            # Get actual Earth radius at current latitude.
            boundary_lat, _ = stat.boundary_point.to_lat_lon()
            earth_radius_kms = _tools.geocentric_radius(boundary_lat) / 1e3

            # Convergence velocity was calculated using pygplates.Earth.mean_radius_in_kms,
            # so adjust for actual Earth radius 'earth_radius_kms' at current latitude.
            convergence_velocity_orthogonal = stat.convergence_velocity_orthogonal * (
                earth_radius_kms / pygplates.Earth.mean_radius_in_kms
            )

            # Calculate crustal production rate at current location (in km^2/yr).
            #
            # Note: Orthogonal convergence velocity is guaranteed to be non-NaN.
            crustal_production_rate = (
                -convergence_velocity_orthogonal  # negate for divergence
                * 1e-5  # convert cm/yr to km/yr
                * stat.boundary_length  # radians
                * earth_radius_kms  # km
            )

            total_crustal_production_rate += crustal_production_rate

        # Total crustal destruction rate at convergent plate boundaries.
        total_crustal_destruction_rate = 0.0
        for stat in converging_data:
            # Get actual Earth radius at current latitude.
            boundary_lat, _ = stat.boundary_point.to_lat_lon()
            earth_radius_kms = _tools.geocentric_radius(boundary_lat) / 1e3

            # Convergence velocity was calculated using pygplates.Earth.mean_radius_in_kms,
            # so adjust for actual Earth radius 'earth_radius_kms' at current latitude.
            convergence_velocity_orthogonal = stat.convergence_velocity_orthogonal * (
                earth_radius_kms / pygplates.Earth.mean_radius_in_kms
            )

            # Calculate crustal destruction rate at current location (in km^2/yr).
            #
            # Note: Orthogonal convergence velocity is guaranteed to be non-NaN.
            crustal_destruction_rate = (
                convergence_velocity_orthogonal
                * 1e-5  # convert cm/yr to km/yr
                * stat.boundary_length  # radians
                * earth_radius_kms  # km
            )

            total_crustal_destruction_rate += crustal_destruction_rate

        return total_crustal_production_rate, total_crustal_destruction_rate

    def _subduction_convergence(
        self,
        time,
        uniform_point_spacing_radians,
        velocity_delta_time,
        anchor_plate_id,
        include_network_boundaries,
        convergence_threshold_in_cm_per_yr,
        output_distance_to_nearest_edge_of_trench=False,
        output_distance_to_start_edge_of_trench=False,
        output_convergence_velocity_components=False,
        output_trench_absolute_velocity_components=False,
        output_subducting_absolute_velocity=False,
        output_subducting_absolute_velocity_components=False,
        output_trench_normal=False,
    ):
        #
        # This is essentially a replacement for 'ptt.subduction_convergence.subduction_convergence()'.
        #
        # Instead of calculating convergence along subduction zones using subducting and overriding plate IDs,
        # it uses pyGPlates 1.0 functionality that calculates statistics along plate boundaries
        # (such as plate velocities, from which convergence velocity can be obtained).
        #
        # Note that this function has an advantage over 'ptt.subduction_convergence.subduction_convergence()':
        #   It does not reject subducting boundaries that have more than one (or even zero) subducting plates (or subducting networks),
        #   which can happen if the topological model was built incorrectly (eg, mislabelled plate boundaries).
        #   As long as there's at least one plate (or network) on the subducting side then it can find it
        #   (even if the plate is not directly attached to the subduction zone, ie, doesn't specify it as part of its boundary).
        # However, like 'ptt.subduction_convergence.subduction_convergence()', it only samples plate boundaries that have a
        # subduction polarity (eg, subduction zones) since we still need to know which plates are subducting and overriding,
        # and hence cannot calculate convergence over all plate boundaries.

        # Restrict plate boundaries to those that have a subduction polarity.
        # This is just an optimisation to avoid unnecessarily sampling all plate boundaries.
        def _boundary_section_filter_function(resolved_topological_section):
            return (
                resolved_topological_section.get_feature().get_enumeration(
                    pygplates.PropertyName.gpml_subduction_polarity
                )
                is not None
            )

        # Generate statistics at uniformly spaced points along plate boundaries.
        plate_boundary_statistics_dict = self.topological_snapshot(
            time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            # Ignore topological slab boundaries since they are not *plate* boundaries
            # (a slab edge could have a subduction polarity, and would otherwise get included)...
            include_topological_slab_boundaries=False,
        ).calculate_plate_boundary_statistics(
            uniform_point_spacing_radians,
            first_uniform_point_spacing_radians=0,
            velocity_delta_time=velocity_delta_time,
            velocity_units=pygplates.VelocityUnits.cms_per_yr,
            include_network_boundaries=include_network_boundaries,
            boundary_section_filter=_boundary_section_filter_function,
            return_shared_sub_segment_dict=True,
        )

        subduction_data = []

        # Iterate over the shared boundary sub-segments (each one will have a list of uniform points).
        for (
            shared_sub_segment,
            shared_sub_segment_stats,
        ) in plate_boundary_statistics_dict.items():

            # Find the subduction plate of the current shared boundary sub-segment.
            subducting_plate_and_polarity = shared_sub_segment.get_subducting_plate(
                return_subduction_polarity=True,
                enforce_single_plate=False,
            )
            # Skip current shared boundary sub-segment if it doesn't have a valid subduction polarity.
            #
            # Note: There might not even be a subducting plate directly attached, but that's fine because
            #       we're only interested in the subduction polarity. Later we'll get the subducting plate
            #       from the plate boundary statistics instead (since that's more reliable).
            if not subducting_plate_and_polarity:
                continue
            _, subduction_polarity = subducting_plate_and_polarity

            if subduction_polarity == "Left":
                overriding_plate_is_on_left = True
            else:
                overriding_plate_is_on_left = False

            # TODO: Get trench plate ID from sub-segments of shared sub-segment (if it's a topological line).
            #       This will probably require adding the sub-segment feature (or sub-sub-segment if topological line)
            #       to pygplates.PlateBoundaryStatistic (so we can obtain the trench plate ID).
            #       Perhaps can slip that into pygplates 1.0.0 (Jan 2025).
            #       Until then this will not be accurate for deforming topological lines:
            #         See https://github.com/GPlates/gplately/issues/270
            trench_plate_id = (
                shared_sub_segment.get_feature().get_reconstruction_plate_id()
            )

            # Iterate over the uniform points of the current shared boundary sub-segment.
            for stat in shared_sub_segment_stats:
                # Find subducting plate velocity (opposite to overriding plate).
                if overriding_plate_is_on_left:
                    subducting_plate_velocity = stat.right_plate_velocity
                else:
                    subducting_plate_velocity = stat.left_plate_velocity
                # Reject point if there's no subducting plate (or network).
                if subducting_plate_velocity is None:
                    continue

                # The convergence velocity is actually that of the subducting plate relative to the trench line.
                # It's not the right plate relative to the left (or vice versa).
                convergence_velocity = (
                    subducting_plate_velocity - stat.boundary_velocity
                )

                # Get the trench normal (and azimuth).
                trench_normal = stat.boundary_normal
                trench_normal_azimuth = stat.boundary_normal_azimuth
                # If the trench normal (in direction of overriding plate) is opposite the boundary line normal
                # (which is to the left) then flip it.
                if not overriding_plate_is_on_left:
                    trench_normal = -trench_normal
                    trench_normal_azimuth -= np.pi
                    # Keep in the range [0, 2*pi].
                    if trench_normal_azimuth < 0:
                        trench_normal_azimuth += 2 * np.pi

                # If requested, reject point if it's not converging within specified threshold.
                if convergence_threshold_in_cm_per_yr is not None:
                    # Note that we use the 'orthogonal' component of velocity vector.
                    if (
                        pygplates.Vector3D.dot(convergence_velocity, trench_normal)
                        < convergence_threshold_in_cm_per_yr
                    ):
                        continue

                # Convergence velocity magnitude and obliquity.
                if convergence_velocity.is_zero_magnitude():
                    convergence_velocity_magnitude = 0
                    convergence_obliquity = 0
                else:
                    convergence_velocity_magnitude = (
                        convergence_velocity.get_magnitude()
                    )
                    convergence_obliquity = pygplates.Vector3D.angle_between(
                        convergence_velocity, trench_normal
                    )

                    # The direction towards which we rotate from the trench normal in a clockwise fashion.
                    clockwise_direction = pygplates.Vector3D.cross(
                        trench_normal, stat.boundary_point.to_xyz()
                    )
                    # Anti-clockwise direction has range (0, -pi) instead of (0, pi).
                    if (
                        pygplates.Vector3D.dot(
                            convergence_velocity, clockwise_direction
                        )
                        < 0
                    ):
                        convergence_obliquity = -convergence_obliquity

                    # See if plates are diverging (moving away from each other).
                    # If plates are diverging (moving away from each other) then make the
                    # velocity magnitude negative to indicate this. This could be inferred from
                    # the obliquity but it seems this is the standard way to output convergence rate.
                    #
                    # Note: This is the same as done in 'ptt.subduction_convergence.subduction_convergence()'.
                    if pygplates.Vector3D.dot(convergence_velocity, trench_normal) < 0:
                        convergence_velocity_magnitude = -convergence_velocity_magnitude

                # Trench absolute velocity magnitude and obliquity.
                trench_absolute_velocity_magnitude = stat.boundary_velocity_magnitude
                trench_absolute_velocity_obliquity = stat.boundary_velocity_obliquity

                # If the trench normal (in direction of overriding plate) is opposite the boundary line normal (which is to the left)
                # then we need to flip the obliquity of the trench absolute velocity vector. This is because it's currently relative
                # to the boundary line normal but needs to be relative to the trench normal.
                if not overriding_plate_is_on_left:
                    trench_absolute_velocity_obliquity -= np.pi
                    # Keep obliquity in the range [-pi, pi].
                    if trench_absolute_velocity_obliquity < -np.pi:
                        trench_absolute_velocity_obliquity += 2 * np.pi

                # See if the trench absolute motion is heading in the direction of the
                # overriding plate. If it is then make the velocity magnitude negative to
                # indicate this. This could be inferred from the obliquity but it seems this
                # is the standard way to output trench velocity magnitude.
                #
                # Note that we are not calculating the motion of the trench
                # relative to the overriding plate - they are usually attached to each other
                # and hence wouldn't move relative to each other.
                #
                # Note: This is the same as done in 'ptt.subduction_convergence.subduction_convergence()'.
                if np.abs(trench_absolute_velocity_obliquity) < 0.5 * np.pi:
                    trench_absolute_velocity_magnitude = (
                        -trench_absolute_velocity_magnitude
                    )

                lat, lon = stat.boundary_point.to_lat_lon()

                if overriding_plate_is_on_left:
                    subducting_plate = stat.right_plate
                else:
                    subducting_plate = stat.left_plate

                # Get the subducting plate ID from resolved topological boundary (or network).
                if subducting_plate.located_in_resolved_boundary():
                    subducting_plate_id = (
                        subducting_plate.located_in_resolved_boundary()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )
                else:
                    subducting_plate_id = (
                        subducting_plate.located_in_resolved_network()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )

                output_tuple = (
                    lon,
                    lat,
                    convergence_velocity_magnitude,
                    np.degrees(convergence_obliquity),
                    trench_absolute_velocity_magnitude,
                    np.degrees(trench_absolute_velocity_obliquity),
                    np.degrees(stat.boundary_length),
                    np.degrees(trench_normal_azimuth),
                    subducting_plate_id,
                    trench_plate_id,
                )

                if output_distance_to_nearest_edge_of_trench:
                    distance_to_nearest_edge_of_trench = min(
                        stat.distance_from_start_of_topological_section,
                        stat.distance_to_end_of_topological_section,
                    )
                    output_tuple += (np.degrees(distance_to_nearest_edge_of_trench),)

                if output_distance_to_start_edge_of_trench:
                    # We want the distance to be along the clockwise direction around the overriding plate.
                    if overriding_plate_is_on_left:
                        # The overriding plate is on the left of the trench.
                        # So the clockwise direction starts at the end of the trench.
                        distance_to_start_edge_of_trench = (
                            stat.distance_to_end_of_topological_section
                        )
                    else:
                        # The overriding plate is on the right of the trench.
                        # So the clockwise direction starts at the beginning of the trench.
                        distance_to_start_edge_of_trench = (
                            stat.distance_from_start_of_topological_section
                        )
                    output_tuple += (np.degrees(distance_to_start_edge_of_trench),)

                if output_convergence_velocity_components:
                    # The orthogonal and parallel components are just magnitude multiplied by cosine and sine.
                    convergence_velocity_orthogonal = np.cos(
                        convergence_obliquity
                    ) * np.abs(convergence_velocity_magnitude)
                    convergence_velocity_parallel = np.sin(
                        convergence_obliquity
                    ) * np.abs(convergence_velocity_magnitude)
                    output_tuple += (
                        convergence_velocity_orthogonal,
                        convergence_velocity_parallel,
                    )

                if output_trench_absolute_velocity_components:
                    # The orthogonal and parallel components are just magnitude multiplied by cosine and sine.
                    trench_absolute_velocity_orthogonal = np.cos(
                        trench_absolute_velocity_obliquity
                    ) * np.abs(trench_absolute_velocity_magnitude)
                    trench_absolute_velocity_parallel = np.sin(
                        trench_absolute_velocity_obliquity
                    ) * np.abs(trench_absolute_velocity_magnitude)
                    output_tuple += (
                        trench_absolute_velocity_orthogonal,
                        trench_absolute_velocity_parallel,
                    )

                if (
                    output_subducting_absolute_velocity
                    or output_subducting_absolute_velocity_components
                ):
                    # Subducting absolute velocity magnitude and obliquity.
                    #
                    # Note: Subducting plate is opposite the overriding plate.
                    if overriding_plate_is_on_left:
                        subducting_absolute_velocity_magnitude = (
                            stat.right_plate_velocity_magnitude
                        )
                        subducting_absolute_velocity_obliquity = (
                            stat.right_plate_velocity_obliquity
                        )
                    else:
                        subducting_absolute_velocity_magnitude = (
                            stat.left_plate_velocity_magnitude
                        )
                        subducting_absolute_velocity_obliquity = (
                            stat.left_plate_velocity_obliquity
                        )
                        # Flip obliquity since trench normal (towards overidding plate on right)
                        # is opposite the boundary line normal (towards left).
                        subducting_absolute_velocity_obliquity -= np.pi
                        # Keep obliquity in the range [-pi, pi].
                        if subducting_absolute_velocity_obliquity < -np.pi:
                            subducting_absolute_velocity_obliquity += 2 * np.pi

                    # Similar to the trench absolute motion, if subducting absolute motion is heading
                    # in the direction of the overriding plate then make the velocity magnitude negative.
                    if np.abs(subducting_absolute_velocity_obliquity) < 0.5 * np.pi:
                        subducting_absolute_velocity_magnitude = (
                            -subducting_absolute_velocity_magnitude
                        )

                    if output_subducting_absolute_velocity:
                        output_tuple += (
                            subducting_absolute_velocity_magnitude,
                            np.degrees(subducting_absolute_velocity_obliquity),
                        )
                    if output_subducting_absolute_velocity_components:
                        # The orthogonal and parallel components are just magnitude multiplied by cosine and sine.
                        subducting_absolute_velocity_orthogonal = np.cos(
                            subducting_absolute_velocity_obliquity
                        ) * np.abs(subducting_absolute_velocity_magnitude)
                        subducting_absolute_velocity_parallel = np.sin(
                            subducting_absolute_velocity_obliquity
                        ) * np.abs(subducting_absolute_velocity_magnitude)
                        output_tuple += (
                            subducting_absolute_velocity_orthogonal,
                            subducting_absolute_velocity_parallel,
                        )

                if output_trench_normal:
                    output_tuple += trench_normal.to_xyz()

                subduction_data.append(output_tuple)

        return subduction_data

    def tessellate_subduction_zones(
        self,
        time,
        tessellation_threshold_radians=0.001,
        ignore_warnings=False,
        return_geodataframe=False,
        *,
        use_ptt=False,
        include_network_boundaries=False,
        convergence_threshold_in_cm_per_yr=None,
        anchor_plate_id=None,
        velocity_delta_time=1.0,
        output_distance_to_nearest_edge_of_trench=False,
        output_distance_to_start_edge_of_trench=False,
        output_convergence_velocity_components=False,
        output_trench_absolute_velocity_components=False,
        output_subducting_absolute_velocity=False,
        output_subducting_absolute_velocity_components=False,
        output_trench_normal=False,
    ):
        """Samples points along subduction zone trenches and obtains subduction data at a particular geological time.

        Resolves topologies at `time` and tessellates all resolved subducting features into points.

        Returns a 10-column vertically-stacked tuple with the following data per sampled trench point:

        * Col. 0 - longitude of sampled trench point
        * Col. 1 - latitude of sampled trench point
        * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
        * Col. 3 - subducting convergence velocity obliquity angle in degrees (angle between trench normal vector and convergence velocity vector)
        * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
        * Col. 5 - trench absolute velocity obliquity angle in degrees (angle between trench normal vector and trench absolute velocity vector)
        * Col. 6 - length of arc segment (in degrees) that current point is on
        * Col. 7 - trench normal (in subduction direction, ie, towards overriding plate) azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
        * Col. 8 - subducting plate ID
        * Col. 9 - trench plate ID

        The optional 'output_*' parameters can be used to append extra data to the output tuple of each sampled trench point.
        The order of any extra data is the same order in which the parameters are listed below.

        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query subduction convergence.
        tessellation_threshold_radians : float, default=0.001
            The threshold sampling distance along the plate boundaries (in radians).
        ignore_warnings : bool, default=False
            Choose to ignore warnings from Plate Tectonic Tools' subduction_convergence workflow (if `use_ptt` is `True`).
        return_geodataframe : bool, default=False
            Choose to return data in a geopandas.GeoDataFrame.
        use_ptt : bool, default=False
            If set to `True` then uses Plate Tectonic Tools' `subduction_convergence` workflow to calculate subduction convergence
            (which uses the subducting stage rotation of the subduction/trench plate IDs calculate subducting velocities).
            If set to `False` then uses plate convergence to calculate subduction convergence
            (which samples velocities of the two adjacent boundary plates at each sampled point to calculate subducting velocities).
            Both methods ignore plate boundaries that do not have a subduction polarity (feature property), which essentially means
            they only sample subduction zones.
        include_network_boundaries : bool, default=False
            Whether to calculate subduction convergence along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
            Since subduction zones occur along *plate* boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
        convergence_threshold_in_cm_per_yr : float, optional
            Only return sample points with an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr).
            For example, setting this to `0.0` would remove all diverging sample points (leaving only converging points).
            This value can be negative which means a small amount of divergence is allowed.
            If `None` then all (converging and diverging) sample points are returned. This is the default.
            Note that this parameter can only be specified if `use_ptt` is `False`.
        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute)..
        velocity_delta_time : float, default=1.0
            Velocity delta time used in convergence velocity calculations (defaults to 1 Myr).
        output_distance_to_nearest_edge_of_trench : bool, default=False
            Append the distance (in degrees) along the trench line to the nearest trench edge to each returned sample point.
            A trench edge is the farthermost location on the current trench feature that contributes to a plate boundary.
        output_distance_to_start_edge_of_trench : bool, default=False
            Append the distance (in degrees) along the trench line from the start edge of the trench to each returned sample point.
            The start of the trench is along the clockwise direction around the overriding plate.
        output_convergence_velocity_components : bool, default=False
            Append the convergence velocity orthogonal and parallel components (in cm/yr) to each returned sample point.
            Orthogonal is normal to trench (in direction of overriding plate when positive).
            Parallel is along trench (90 degrees clockwise from trench normal when positive).
        output_trench_absolute_velocity_components : bool, default=False
            Append the trench absolute velocity orthogonal and parallel components (in cm/yr) to each returned sample point.
            Orthogonal is normal to trench (in direction of overriding plate when positive).
            Parallel is along trench (90 degrees clockwise from trench normal when positive).
        output_subducting_absolute_velocity : bool, default=False
            Append the subducting plate absolute velocity magnitude (in cm/yr) and obliquity angle (in degrees) to each returned sample point.
        output_subducting_absolute_velocity_components : bool, default=False
            Append the subducting plate absolute velocity orthogonal and parallel components (in cm/yr) to each returned sample point.
            Orthogonal is normal to trench (in direction of overriding plate when positive).
            Parallel is along trench (90 degrees clockwise from trench normal when positive).
        output_trench_normal : bool, default=False
            Append the x, y and z components of the trench normal unit-length 3D vectors.
            These vectors are normal to the trench in the direction of subduction (towards overriding plate).
            These are global 3D vectors which differ from trench normal azimuth angles (ie, angles relative to North).

        Returns
        -------
        subduction_data : a list of vertically-stacked tuples
            The results for all tessellated points sampled along the trench.
            The size of the returned list is equal to the number of tessellated points.
            Each tuple in the list corresponds to a tessellated point and has the following tuple items:

            * Col. 0 - longitude of sampled trench point
            * Col. 1 - latitude of sampled trench point
            * Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
            * Col. 3 - subducting convergence velocity obliquity angle in degrees (angle between trench normal vector and convergence velocity vector)
            * Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
            * Col. 5 - trench absolute velocity obliquity angle in degrees (angle between trench normal vector and trench absolute velocity vector)
            * Col. 6 - length of arc segment (in degrees) that current point is on
            * Col. 7 - trench normal (in subduction direction, ie, towards overriding plate) azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
            * Col. 8 - subducting plate ID
            * Col. 9 - trench plate ID

            The optional 'output_*' parameters can be used to append extra data to the tuple of each sampled trench point.
            The order of any extra data is the same order in which the parameters are listed in this function.

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        ValueError
            If `use_ptt` is `True` and `convergence_threshold_in_cm_per_yr` is not `None`.

        Notes
        -----
        If `use_ptt` is False then each trench is sampled at *exactly* uniform intervals along its length such that the sampled points
        have a uniform spacing (along each trench polyline) that is *equal* to `tessellation_threshold_radians`.
        If `use_ptt` is True then each trench is sampled at *approximately* uniform intervals along its length such that the sampled points
        have a uniform spacing (along each trench polyline) that is *less than or equal to* `tessellation_threshold_radians`.

        The trench normal (at each sampled trench point) always points *towards* the overriding plate.
        The obliquity angles are in the range (-180, 180). The range (0, 180) goes clockwise (when viewed from above the Earth)
        from the trench normal direction to the velocity vector. The range (0, -180) goes counter-clockwise.
        You can change the range (-180, 180) to the range (0, 360) by adding 360 to negative angles.
        The trench normal is perpendicular to the trench and pointing toward the overriding plate.

        Note that the convergence velocity magnitude is negative if the plates are diverging (if convergence obliquity angle
        is greater than 90 or less than -90). And note that the trench absolute velocity magnitude is negative if the trench
        (subduction zone) is moving towards the overriding plate (if trench absolute obliquity angle is less than 90 and greater
        than -90) - note that this ignores the kinematics of the subducting plate. Similiarly for the subducting plate absolute
        velocity magnitude (if keyword argument `output_subducting_absolute_velocity` is True).

        Examples
        --------
        To sample points along subduction zones at 50Ma:

            subduction_data = plate_reconstruction.tessellate_subduction_zones(50)

        To sample points along subduction zones at 50Ma, but only where there's convergence:

            subduction_data = plate_reconstruction.tessellate_subduction_zones(50,
                    convergence_threshold_in_cm_per_yr=0.0)
        """

        if use_ptt:
            from . import ptt as _ptt

            if convergence_threshold_in_cm_per_yr is not None:
                raise ValueError(
                    "Can only specify 'convergence_threshold_in_cm_per_yr' if 'use_ptt' is False."
                )

            with warnings.catch_warnings():
                if ignore_warnings:
                    warnings.simplefilter("ignore")

                subduction_data = _ptt.subduction_convergence.subduction_convergence(
                    self.rotation_model,
                    self._check_topology_features(
                        # Ignore topological slab boundaries since they are not *plate* boundaries
                        # (actually they get ignored by default in 'ptt.subduction_convergence' anyway)...
                        include_topological_slab_boundaries=False
                    ),
                    tessellation_threshold_radians,
                    time,
                    velocity_delta_time=velocity_delta_time,
                    anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
                    include_network_boundaries=include_network_boundaries,
                    output_distance_to_nearest_edge_of_trench=output_distance_to_nearest_edge_of_trench,
                    output_distance_to_start_edge_of_trench=output_distance_to_start_edge_of_trench,
                    output_convergence_velocity_components=output_convergence_velocity_components,
                    output_trench_absolute_velocity_components=output_trench_absolute_velocity_components,
                    output_subducting_absolute_velocity=output_subducting_absolute_velocity,
                    output_subducting_absolute_velocity_components=output_subducting_absolute_velocity_components,
                    output_trench_normal=output_trench_normal,
                )

        else:
            subduction_data = self._subduction_convergence(
                time,
                uniform_point_spacing_radians=tessellation_threshold_radians,
                velocity_delta_time=velocity_delta_time,
                anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
                include_network_boundaries=include_network_boundaries,
                convergence_threshold_in_cm_per_yr=convergence_threshold_in_cm_per_yr,
                output_distance_to_nearest_edge_of_trench=output_distance_to_nearest_edge_of_trench,
                output_distance_to_start_edge_of_trench=output_distance_to_start_edge_of_trench,
                output_convergence_velocity_components=output_convergence_velocity_components,
                output_trench_absolute_velocity_components=output_trench_absolute_velocity_components,
                output_subducting_absolute_velocity=output_subducting_absolute_velocity,
                output_subducting_absolute_velocity_components=output_subducting_absolute_velocity_components,
                output_trench_normal=output_trench_normal,
            )

        if subduction_data:
            subduction_data = np.vstack(subduction_data)
        else:
            # No subduction data.
            num_columns = 10
            if output_distance_to_nearest_edge_of_trench:
                num_columns += 1
            if output_distance_to_start_edge_of_trench:
                num_columns += 1
            if output_convergence_velocity_components:
                num_columns += 2
            if output_trench_absolute_velocity_components:
                num_columns += 2
            if output_subducting_absolute_velocity:
                num_columns += 2
            if output_subducting_absolute_velocity_components:
                num_columns += 2
            if output_trench_normal:
                num_columns += 3
            subduction_data = np.empty((0, num_columns))

        if return_geodataframe:
            import geopandas as gpd
            from shapely import geometry

            points = [
                geometry.Point(lon, lat)
                for lon, lat in zip(subduction_data[:, 0], subduction_data[:, 1])
            ]
            # Required data.
            gdf_data = {
                "geometry": points,
                "convergence velocity (cm/yr)": subduction_data[:, 2],
                "convergence obliquity angle (degrees)": subduction_data[:, 3],
                "trench velocity (cm/yr)": subduction_data[:, 4],
                "trench obliquity angle (degrees)": subduction_data[:, 5],
                "length (degrees)": subduction_data[:, 6],
                "trench normal angle (degrees)": subduction_data[:, 7],
                "subducting plate ID": subduction_data[:, 8],
                "overriding plate ID": subduction_data[:, 9],
            }

            # Optional data.
            #
            # Note: The order must match the output order.
            optional_gdf_data_index = 10
            if output_distance_to_nearest_edge_of_trench:
                gdf_data["distance to nearest trench edge (degrees)"] = subduction_data[
                    :, optional_gdf_data_index
                ]
                optional_gdf_data_index += 1
            if output_distance_to_start_edge_of_trench:
                gdf_data["distance to start of trench edge (degrees)"] = (
                    subduction_data[:, optional_gdf_data_index]
                )
                optional_gdf_data_index += 1
            if output_convergence_velocity_components:
                gdf_data["convergence velocity orthogonal component (cm/yr)"] = (
                    subduction_data[:, optional_gdf_data_index]
                )
                gdf_data["convergence velocity parallel component (cm/yr)"] = (
                    subduction_data[:, optional_gdf_data_index + 1]
                )
                optional_gdf_data_index += 2
            if output_trench_absolute_velocity_components:
                gdf_data["trench absolute velocity orthogonal component (cm/yr)"] = (
                    subduction_data[:, optional_gdf_data_index]
                )
                gdf_data["trench absolute velocity parallel component (cm/yr)"] = (
                    subduction_data[:, optional_gdf_data_index + 1]
                )
                optional_gdf_data_index += 2
            if output_subducting_absolute_velocity:
                gdf_data["subducting absolute velocity (cm/yr)"] = subduction_data[
                    :, optional_gdf_data_index
                ]
                gdf_data["subducting absolute obliquity angle (degrees)"] = (
                    subduction_data[:, optional_gdf_data_index + 1]
                )
                optional_gdf_data_index += 2
            if output_subducting_absolute_velocity_components:
                gdf_data[
                    "subducting absolute velocity orthogonal component (cm/yr)"
                ] = subduction_data[:, optional_gdf_data_index]
                gdf_data["subducting absolute velocity parallel component (cm/yr)"] = (
                    subduction_data[:, optional_gdf_data_index + 1]
                )
                optional_gdf_data_index += 2
            if output_trench_normal:
                gdf_data["trench normal (unit-length 3D vector) x component"] = (
                    subduction_data[:, optional_gdf_data_index]
                )
                gdf_data["trench normal (unit-length 3D vector) y component"] = (
                    subduction_data[:, optional_gdf_data_index + 1]
                )
                gdf_data["trench normal (unit-length 3D vector) z component"] = (
                    subduction_data[:, optional_gdf_data_index + 2]
                )
                optional_gdf_data_index += 3

            gdf = gpd.GeoDataFrame(gdf_data, geometry="geometry")
            return gdf

        else:
            return subduction_data

    def total_subduction_zone_length(
        self,
        time,
        use_ptt=False,
        ignore_warnings=False,
        *,
        include_network_boundaries=False,
        convergence_threshold_in_cm_per_yr=None,
    ):
        """Calculates the total length of all subduction zones (km) at the specified geological time (Ma).

        Resolves topologies at `time` and tessellates all resolved subducting features into points (see `tessellate_subduction_zones`).

        Total length is calculated by sampling points along the resolved subducting features (e.g. subduction zones) and accumulating their lengths
        (see `tessellate_subduction_zones`). Scales lengths to kilometres using the geocentric radius (at each sampled point).

        Parameters
        ----------
        time : int
            The geological time at which to calculate total subduction zone lengths.
        use_ptt : bool, default=False
            If set to `True` then uses Plate Tectonic Tools' `subduction_convergence` workflow to calculate total subduction zone length.
            If set to `False` then uses plate convergence instead.
            Plate convergence is the more general approach that works along all plate boundaries (not just subduction zones).
        ignore_warnings : bool, default=False
            Choose to ignore warnings from Plate Tectonic Tools' subduction_convergence workflow (if `use_ptt` is `True`).
        include_network_boundaries : bool, default=False
            Whether to count lengths along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
            Since subduction zones occur along *plate* boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
        convergence_threshold_in_cm_per_yr : float, optional
            Only count lengths associated with sample points that have an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr).
            For example, setting this to `0.0` would remove all diverging sample points (leaving only converging points).
            This value can be negative which means a small amount of divergence is allowed.
            If `None` then all (converging and diverging) sample points are counted. This is the default.
            Note that this parameter can only be specified if `use_ptt` is `False`.

        Returns
        -------
        total_subduction_zone_length_kms : float
            The total subduction zone length (in km) at the specified `time`.

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        ValueError
            If `use_ptt` is `True` and `convergence_threshold_in_cm_per_yr` is not `None`.

        Examples
        --------
        To calculate the total length of subduction zones at 50Ma:

            total_subduction_zone_length_kms = plate_reconstruction.total_subduction_zone_length(50)

        To calculate the total length of subduction zones at 50Ma, but only where there's actual convergence:

            total_subduction_zone_length_kms = plate_reconstruction.total_subduction_zone_length(50,
                    convergence_threshold_in_cm_per_yr=0.0)
        """
        subduction_data = self.tessellate_subduction_zones(
            time,
            ignore_warnings=ignore_warnings,
            use_ptt=use_ptt,
            include_network_boundaries=include_network_boundaries,
            convergence_threshold_in_cm_per_yr=convergence_threshold_in_cm_per_yr,
        )

        trench_arcseg = subduction_data[:, 6]
        trench_pt_lat = subduction_data[:, 1]

        total_subduction_zone_length_kms = 0
        for i, segment in enumerate(trench_arcseg):
            earth_radius = _tools.geocentric_radius(trench_pt_lat[i]) / 1e3
            total_subduction_zone_length_kms += np.deg2rad(segment) * earth_radius

        return total_subduction_zone_length_kms

    def total_continental_arc_length(
        self,
        time,
        continental_grid,
        trench_arc_distance,
        ignore_warnings=True,
        *,
        use_ptt=False,
        include_network_boundaries=False,
        convergence_threshold_in_cm_per_yr=None,
    ):
        """Calculates the total length of all global continental arcs (km) at the specified geological time (Ma).

        Resolves topologies at `time` and tessellates all resolved subducting features into points (see `tessellate_subduction_zones`).
        The resolved points then are projected out by the `trench_arc_distance` (towards overriding plate) and their new locations are
        linearly interpolated onto the supplied `continental_grid`. If the projected trench points lie in the grid, they are considered
        continental arc points, and their arc segment lengths are appended to the total continental arc length for the specified `time`.
        The total length is scaled to kilometres using the geocentric radius (at each sampled point).

        Parameters
        ----------
        time : int
            The geological time at which to calculate total continental arc lengths.
        continental_grid: Raster, array_like, or str
            The continental grid used to identify continental arc points. Must
            be convertible to `Raster`. For an array, a global extent is
            assumed [-180,180,-90,90]. For a filename, the extent is obtained
            from the file.
        trench_arc_distance : float
            The trench-to-arc distance (in kilometres) to project sampled trench points out by in the direction of the overriding plate.
        ignore_warnings : bool, default=True
            Choose whether to ignore warning messages from Plate Tectonic Tools' subduction_convergence workflow (if `use_ptt` is `True`)
            that alerts the user of subduction sub-segments that are ignored due to unidentified polarities and/or subducting plates.
        use_ptt : bool, default=False
            If set to `True` then uses Plate Tectonic Tools' `subduction_convergence` workflow to sample subducting features and their subduction polarities.
            If set to `False` then uses plate convergence instead.
            Plate convergence is the more general approach that works along all plate boundaries (not just subduction zones).
        include_network_boundaries : bool, default=False
            Whether to sample subducting features along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
            Since subduction zones occur along *plate* boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
        convergence_threshold_in_cm_per_yr : float, optional
            Only sample points with an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr).
            For example, setting this to `0.0` would remove all diverging sample points (leaving only converging points).
            This value can be negative which means a small amount of divergence is allowed.
            If `None` then all (converging and diverging) points are sampled. This is the default.
            Note that this parameter can only be specified if `use_ptt` is `False`.

        Returns
        -------
        total_continental_arc_length_kms : float
            The continental arc length (in km) at the specified time.

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        ValueError
            If `use_ptt` is `True` and `convergence_threshold_in_cm_per_yr` is not `None`.

        Examples
        --------
        To calculate the total length of continental arcs at 50Ma:

            total_continental_arc_length_kms = plate_reconstruction.total_continental_arc_length(50)

        To calculate the total length of subduction zones adjacent to continents at 50Ma, but only where there's actual convergence:

            total_continental_arc_length_kms = plate_reconstruction.total_continental_arc_length(50,
                    convergence_threshold_in_cm_per_yr=0.0)
        """
        from . import grids as _grids

        if isinstance(continental_grid, _grids.Raster):
            graster = continental_grid
        elif isinstance(continental_grid, str):
            # Process the continental grid directory
            graster = _grids.Raster(
                data=continental_grid,
                realign=True,
                time=float(time),
            )
        else:
            # Process the masked continental grid
            try:
                continental_grid = np.array(continental_grid)
                graster = _grids.Raster(
                    data=continental_grid,
                    extent=[-180, 180, -90, 90],
                    time=float(time),
                )
            except Exception as e:
                raise TypeError(
                    "Invalid type for `continental_grid` (must be Raster,"
                    + " str, or array_like)"
                ) from e
        if (time != graster.time) and (not ignore_warnings):
            raise RuntimeWarning(
                "`continental_grid.time` ({}) ".format(graster.time)
                + "does not match `time` ({})".format(time)
            )

        # Obtain trench data.
        trench_data = self.tessellate_subduction_zones(
            time,
            ignore_warnings=ignore_warnings,
            use_ptt=use_ptt,
            include_network_boundaries=include_network_boundaries,
            convergence_threshold_in_cm_per_yr=convergence_threshold_in_cm_per_yr,
        )

        # Extract trench data
        trench_normal_azimuthal_angle = trench_data[:, 7]
        trench_arcseg = trench_data[:, 6]
        trench_pt_lon = trench_data[:, 0]
        trench_pt_lat = trench_data[:, 1]

        # Modify the trench-arc distance using the geocentric radius
        arc_distance = trench_arc_distance / (
            _tools.geocentric_radius(trench_pt_lat) / 1000
        )

        # Project trench points out along trench-arc distance, and obtain their new lat-lon coordinates
        dlon = arc_distance * np.sin(np.radians(trench_normal_azimuthal_angle))
        dlat = arc_distance * np.cos(np.radians(trench_normal_azimuthal_angle))
        ilon = trench_pt_lon + np.degrees(dlon)
        ilat = trench_pt_lat + np.degrees(dlat)

        # Linearly interpolate projected points onto continental grids, and collect the indices of points that lie
        # within the grids.
        sampled_points = graster.interpolate(
            ilon,
            ilat,
            method="linear",
            return_indices=False,
        )
        continental_indices = np.where(sampled_points > 0)
        point_lats = ilat[continental_indices]
        point_radii = _tools.geocentric_radius(point_lats) * 1.0e-3  # km
        segment_arclens = np.deg2rad(trench_arcseg[continental_indices])
        segment_lengths = point_radii * segment_arclens
        return np.sum(segment_lengths)

    def _ridge_spreading_rates(
        self,
        time,
        uniform_point_spacing_radians,
        velocity_delta_time,
        anchor_plate_id,
        spreading_feature_types,
        transform_segment_deviation_in_radians,
        include_network_boundaries,
        divergence_threshold_in_cm_per_yr,
        output_obliquity_and_normal_and_left_right_plates,
    ):
        #
        # This is essentially a replacement for 'ptt.ridge_spreading_rate.spreading_rates()'.
        #
        # Instead of calculating spreading rates along mid-ocean ridges using left/right plate IDs,
        # it uses pyGPlates 1.0 functionality that calculates statistics along plate boundaries
        # (such as plate velocities, from which divergence spreading velocity can be obtained).
        #
        # Note that this function has an advantage over 'ptt.ridge_spreading_rate.spreading_rates()'.
        # It can work on all plate boundaries, not just those that are spreading (eg, have left/right plate IDs).
        # This is because it uses plate velocities to calculate divergence (and hence spreading rates).
        #

        # Generate statistics at uniformly spaced points along plate boundaries.
        plate_boundary_statistics = self.topological_snapshot(
            time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            # Ignore topological slab boundaries since they are not *plate* boundaries
            # (useful when 'spreading_feature_types' is None, and hence all plate boundaries are considered)...
            include_topological_slab_boundaries=False,
        ).calculate_plate_boundary_statistics(
            uniform_point_spacing_radians,
            first_uniform_point_spacing_radians=0,
            velocity_delta_time=velocity_delta_time,
            velocity_units=pygplates.VelocityUnits.cms_per_yr,
            include_network_boundaries=include_network_boundaries,
            boundary_section_filter=spreading_feature_types,
        )

        ridge_data = []

        for stat in plate_boundary_statistics:
            # Reject point if there's not a plate (or network) on both the left and right sides.
            if not stat.convergence_velocity:
                continue

            # If requested, reject point if it's not diverging within specified threshold.
            if divergence_threshold_in_cm_per_yr is not None:
                # Note that we use the 'orthogonal' component of velocity vector.
                if (
                    -stat.convergence_velocity_orthogonal
                    < divergence_threshold_in_cm_per_yr
                ):
                    continue

            if (
                output_obliquity_and_normal_and_left_right_plates
                or transform_segment_deviation_in_radians is not None
            ):
                # Convert obliquity from the range [-pi, pi] to [0, pi/2].
                # We're only interested in the deviation angle from the normal line (positive or negative normal direction).
                spreading_obliquity = np.abs(
                    stat.convergence_velocity_obliquity
                )  # not interested in clockwise vs anti-clockwise
                if spreading_obliquity > 0.5 * np.pi:
                    spreading_obliquity = (
                        np.pi - spreading_obliquity
                    )  # angle relative to negative normal direction

                # If a transform segment deviation was specified then we need to reject transform segments.
                if transform_segment_deviation_in_radians is not None:
                    # Reject if spreading direction is too oblique compared to the plate boundary normal.
                    #
                    # Note: If there is zero spreading then we don't actually have an obliquity.
                    #       In which case we reject the current point to match the behaviour of
                    #       'ptt.ridge_spreading_rate.spreading_rates()' which rejects zero spreading stage rotations.
                    if (
                        stat.convergence_velocity.is_zero_magnitude()
                        or spreading_obliquity > transform_segment_deviation_in_radians
                    ):
                        continue

            lat, lon = stat.boundary_point.to_lat_lon()
            spreading_velocity = stat.convergence_velocity_magnitude

            if output_obliquity_and_normal_and_left_right_plates:
                # Get the left plate ID from resolved topological boundary (or network).
                if stat.left_plate.located_in_resolved_boundary():
                    left_plate_id = (
                        stat.left_plate.located_in_resolved_boundary()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )
                else:
                    left_plate_id = (
                        stat.left_plate.located_in_resolved_network()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )
                # Get the right plate ID from resolved topological boundary (or network).
                if stat.right_plate.located_in_resolved_boundary():
                    right_plate_id = (
                        stat.right_plate.located_in_resolved_boundary()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )
                else:
                    right_plate_id = (
                        stat.right_plate.located_in_resolved_network()
                        .get_feature()
                        .get_reconstruction_plate_id()
                    )

                ridge_data.append(
                    (
                        lon,
                        lat,
                        spreading_velocity,
                        np.degrees(spreading_obliquity),
                        np.degrees(stat.boundary_length),
                        np.degrees(stat.boundary_normal_azimuth),
                        left_plate_id,
                        right_plate_id,
                    )
                )
            else:
                ridge_data.append(
                    (
                        lon,
                        lat,
                        spreading_velocity,
                        np.degrees(stat.boundary_length),
                    )
                )

        return ridge_data

    def tessellate_mid_ocean_ridges(
        self,
        time,
        tessellation_threshold_radians=0.001,
        ignore_warnings=False,
        return_geodataframe=False,
        *,
        use_ptt=False,
        spreading_feature_types=[pygplates.FeatureType.gpml_mid_ocean_ridge],
        transform_segment_deviation_in_radians=separate_ridge_transform_segments.DEFAULT_TRANSFORM_SEGMENT_DEVIATION_RADIANS,
        include_network_boundaries=False,
        divergence_threshold_in_cm_per_yr=None,
        output_obliquity_and_normal_and_left_right_plates=False,
        anchor_plate_id=None,
        velocity_delta_time=1.0,
    ):
        """Samples points along resolved spreading features (e.g. mid-ocean ridges) and calculates spreading rates and
        lengths of ridge segments at a particular geological time.

        Resolves topologies at `time` and tessellates all resolved spreading features into points.

        The transform segments of spreading features are ignored (unless `transform_segment_deviation_in_radians` is `None`).

        Returns a 4-column vertically stacked tuple with the following data per sampled ridge point
        (depending on `output_obliquity_and_normal_and_left_right_plates`):

        If `output_obliquity_and_normal_and_left_right_plates` is `False` (the default):

        * Col. 0 - longitude of sampled ridge point
        * Col. 1 - latitude of sampled ridge point
        * Col. 2 - spreading velocity magnitude (in cm/yr)
        * Col. 3 - length of arc segment (in degrees) that current point is on

        If `output_obliquity_and_normal_and_left_right_plates` is `True`:

        * Col. 0 - longitude of sampled ridge point
        * Col. 1 - latitude of sampled ridge point
        * Col. 2 - spreading velocity magnitude (in cm/yr)
        * Col. 3 - spreading obliquity in degrees (deviation from normal line in range 0 to 90 degrees)
        * Col. 4 - length of arc segment (in degrees) that current point is on
        * Col. 5 - azimuth of vector normal to the arc segment in degrees (clockwise starting at North, ie, 0 to 360 degrees)
        * Col. 6 - left plate ID
        * Col. 7 - right plate ID

        Parameters
        ----------
        time : float
            The reconstruction time (Ma) at which to query spreading rates.
        tessellation_threshold_radians : float, default=0.001
            The threshold sampling distance along the plate boundaries (in radians).
        ignore_warnings : bool, default=False
            Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow (if `use_ptt` is `True`).
        return_geodataframe : bool, default=False
            Choose to return data in a geopandas.GeoDataFrame.
        use_ptt : bool, default=False
            If set to `True` then uses Plate Tectonic Tools' `ridge_spreading_rate` workflow to calculate ridge spreading rates
            (which uses the spreading stage rotation of the left/right plate IDs calculate spreading velocities).
            If set to `False` then uses plate divergence to calculate ridge spreading rates
            (which samples velocities of the two adjacent boundary plates at each sampled point to calculate spreading velocities).
            Plate divergence is the more general approach that works along all plate boundaries (not just mid-ocean ridges).
        spreading_feature_types : <pygplates.FeatureType> or sequence of <pygplates.FeatureType>, default=`pygplates.FeatureType.gpml_mid_ocean_ridge`
            Only sample points along plate boundaries of the specified feature types.
            Default is to only sample mid-ocean ridges.
            You can explicitly specify `None` to sample all plate boundaries, but note that if `use_ptt` is `True`
            then only plate boundaries that are spreading feature types are sampled
            (since Plate Tectonic Tools only works on *spreading* plate boundaries, eg, mid-ocean ridges).
        transform_segment_deviation_in_radians : float, default=<implementation-defined>
            How much a spreading direction can deviate from the segment normal before it's considered a transform segment (in radians).
            The default value has been empirically determined to give the best results for typical models.
            If `None` then the full feature geometry is used (ie, it is not split into ridge and transform segments with the transform segments getting ignored).
        include_network_boundaries : bool, default=False
            Whether to calculate spreading rate along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
            Since spreading features occur along *plate* boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as spreading.
        divergence_threshold_in_cm_per_yr : float, optional
            Only return sample points with an orthogonal (ie, in the spreading geometry's normal direction) diverging velocity above this value (in cm/yr).
            For example, setting this to `0.0` would remove all converging sample points (leaving only diverging points).
            This value can be negative which means a small amount of convergence is allowed.
            If `None` then all (diverging and converging) sample points are returned.
            This is the default since `spreading_feature_types` is instead used (by default) to include only plate boundaries that are typically diverging (eg, mid-ocean ridges).
            However, setting `spreading_feature_types` to `None` (and `transform_segment_deviation_in_radians` to `None`) and explicitly specifying this parameter (eg, to `0.0`)
            can be used to find points along all plate boundaries that are diverging.
            However, this parameter can only be specified if `use_ptt` is `False`.
        output_obliquity_and_normal_and_left_right_plates : bool, default=False
            Whether to also return spreading obliquity, normal azimuth and left/right plates.
        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute)..
        velocity_delta_time : float, default=1.0
            Velocity delta time used in spreading velocity calculations (defaults to 1 Myr).

        Returns
        -------
        ridge_data : a list of vertically-stacked tuples
            The results for all tessellated points sampled along the mid-ocean ridges.
            The size of the returned list is equal to the number of tessellated points.
            Each tuple in the list corresponds to a tessellated point and has the following tuple items
            (depending on `output_obliquity_and_normal_and_left_right_plates`):

            If `output_obliquity_and_normal_and_left_right_plates` is `False` (the default):

            * longitude of sampled point
            * latitude of sampled point
            * spreading velocity magnitude (in cm/yr)
            * length of arc segment (in degrees) that sampled point is on

            If `output_obliquity_and_normal_and_left_right_plates` is `True`:

            * longitude of sampled point
            * latitude of sampled point
            * spreading velocity magnitude (in cm/yr)
            * spreading obliquity in degrees (deviation from normal line in range 0 to 90 degrees)
            * length of arc segment (in degrees) that sampled point is on
            * azimuth of vector normal to the arc segment in degrees (clockwise starting at North, ie, 0 to 360 degrees)
            * left plate ID
            * right plate ID

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        ValueError
            If `use_ptt` is `True` and `divergence_threshold_in_cm_per_yr` is not `None`.

        Notes
        -----
        If `use_ptt` is False then each ridge segment is sampled at *exactly* uniform intervals along its length such that the sampled points
        have a uniform spacing (along each ridge segment polyline) that is *equal* to `tessellation_threshold_radians`.
        If `use_ptt` is True then each ridge segment is sampled at *approximately* uniform intervals along its length such that the sampled points
        have a uniform spacing (along each ridge segment polyline) that is *less than or equal to* `tessellation_threshold_radians`.

        Examples
        --------
        To sample points along mid-ocean ridges at 50Ma, but ignoring the transform segments (of the ridges):

            ridge_data = plate_reconstruction.tessellate_mid_ocean_ridges(50)

        To do the same, but instead of ignoring transform segments include both ridge and transform segments,
        but only where orthogonal diverging velocities are greater than 0.2 cm/yr:

            ridge_data = plate_reconstruction.tessellate_mid_ocean_ridges(50,
                    transform_segment_deviation_in_radians=None,
                    divergence_threshold_in_cm_per_yr=0.2)
        """

        if use_ptt:
            from . import ptt as _ptt

            if divergence_threshold_in_cm_per_yr is not None:
                raise ValueError(
                    "Can only specify 'divergence_threshold_in_cm_per_yr' if 'use_ptt' is False."
                )

            with warnings.catch_warnings():
                if ignore_warnings:
                    warnings.simplefilter("ignore")

                ridge_data = _ptt.ridge_spreading_rate.spreading_rates(
                    self.rotation_model,
                    self._check_topology_features(
                        # Ignore topological slab boundaries since they are not *plate* boundaries
                        # (not really needed since only *spreading* feature types are considered, and
                        # they typically wouldn't get used for a slab's boundary)...
                        include_topological_slab_boundaries=False
                    ),
                    time,
                    tessellation_threshold_radians,
                    spreading_feature_types=spreading_feature_types,
                    transform_segment_deviation_in_radians=transform_segment_deviation_in_radians,
                    velocity_delta_time=velocity_delta_time,
                    anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
                    include_network_boundaries=include_network_boundaries,
                    output_obliquity_and_normal_and_left_right_plates=output_obliquity_and_normal_and_left_right_plates,
                )

        else:
            ridge_data = self._ridge_spreading_rates(
                time,
                uniform_point_spacing_radians=tessellation_threshold_radians,
                velocity_delta_time=velocity_delta_time,
                anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
                spreading_feature_types=spreading_feature_types,
                transform_segment_deviation_in_radians=transform_segment_deviation_in_radians,
                include_network_boundaries=include_network_boundaries,
                divergence_threshold_in_cm_per_yr=divergence_threshold_in_cm_per_yr,
                output_obliquity_and_normal_and_left_right_plates=output_obliquity_and_normal_and_left_right_plates,
            )

        if ridge_data:
            ridge_data = np.vstack(ridge_data)
        else:
            # No ridge data.
            if output_obliquity_and_normal_and_left_right_plates:
                ridge_data = np.empty((0, 8))
            else:
                ridge_data = np.empty((0, 4))

        if return_geodataframe:
            import geopandas as gpd
            from shapely import geometry

            points = [
                geometry.Point(lon, lat)
                for lon, lat in zip(ridge_data[:, 0], ridge_data[:, 1])
            ]
            gdf_data = {
                "geometry": points,
                "velocity (cm/yr)": ridge_data[:, 2],
            }
            if output_obliquity_and_normal_and_left_right_plates:
                gdf_data["obliquity (degrees)"] = ridge_data[:, 3]
                gdf_data["length (degrees)"] = ridge_data[:, 4]
                gdf_data["normal azimuth (degrees)"] = ridge_data[:, 5]
                gdf_data["left plate ID"] = ridge_data[:, 6]
                gdf_data["right plate ID"] = ridge_data[:, 7]
            else:
                gdf_data["length (degrees)"] = ridge_data[:, 3]
            return gpd.GeoDataFrame(gdf_data, geometry="geometry")

        else:
            return ridge_data

    def total_ridge_length(
        self,
        time,
        use_ptt=False,
        ignore_warnings=False,
        *,
        spreading_feature_types=[pygplates.FeatureType.gpml_mid_ocean_ridge],
        transform_segment_deviation_in_radians=separate_ridge_transform_segments.DEFAULT_TRANSFORM_SEGMENT_DEVIATION_RADIANS,
        include_network_boundaries=False,
        divergence_threshold_in_cm_per_yr=None,
    ):
        """Calculates the total length of all resolved spreading features (e.g. mid-ocean ridges) at the specified geological time (Ma).

        Resolves topologies at `time` and tessellates all resolved spreading features into points (see `tessellate_mid_ocean_ridges`).

        The transform segments of spreading features are ignored (unless *transform_segment_deviation_in_radians* is `None`).

        Total length is calculated by sampling points along the resolved spreading features (e.g. mid-ocean ridges) and accumulating their lengths
        (see `tessellate_mid_ocean_ridges`). Scales lengths to kilometres using the geocentric radius (at each sampled point).

        Parameters
        ----------
        time : int
            The geological time at which to calculate total mid-ocean ridge lengths.
        use_ptt : bool, default=False
            If set to `True` then uses Plate Tectonic Tools' `ridge_spreading_rate` workflow to calculate total ridge length
            (which uses the spreading stage rotation of the left/right plate IDs to calculate spreading directions - see `transform_segment_deviation_in_radians`).
            If set to `False` then uses plate divergence to calculate total ridge length (which samples velocities of the two adjacent
            boundary plates at each sampled point to calculate spreading directions - see `transform_segment_deviation_in_radians`).
            Plate divergence is the more general approach that works along all plate boundaries (not just mid-ocean ridges).
        ignore_warnings : bool, default=False
            Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow (if `use_ptt` is `True`).
        spreading_feature_types : <pygplates.FeatureType> or sequence of <pygplates.FeatureType>, default=`pygplates.FeatureType.gpml_mid_ocean_ridge`
            Only count lengths along plate boundaries of the specified feature types.
            Default is to only sample mid-ocean ridges.
            You can explicitly specify `None` to sample all plate boundaries, but note that if `use_ptt` is `True`
            then only plate boundaries that are spreading feature types are sampled
            (since Plate Tectonic Tools only works on *spreading* plate boundaries, eg, mid-ocean ridges).
        transform_segment_deviation_in_radians : float, default=<implementation-defined>
            How much a spreading direction can deviate from the segment normal before it's considered a transform segment (in radians).
            The default value has been empirically determined to give the best results for typical models.
            If `None` then the full feature geometry is used (ie, it is not split into ridge and transform segments with the transform segments getting ignored).
        include_network_boundaries : bool, default=False
            Whether to count lengths along network boundaries that are not also plate boundaries (defaults to False).
            If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
            Since spreading features occur along *plate* boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as spreading.
        divergence_threshold_in_cm_per_yr : float, optional
            Only count lengths associated with sample points that have an orthogonal (ie, in the spreading geometry's normal direction) diverging velocity above this value (in cm/yr).
            For example, setting this to `0.0` would remove all converging sample points (leaving only diverging points).
            This value can be negative which means a small amount of convergence is allowed.
            If `None` then all (diverging and converging) sample points are counted.
            This is the default since *spreading_feature_types* is instead used (by default) to include only plate boundaries that are typically diverging (eg, mid-ocean ridges).
            However, setting `spreading_feature_types` to `None` (and `transform_segment_deviation_in_radians` to `None`) and explicitly specifying this parameter (eg, to `0.0`)
            can be used to count points along all plate boundaries that are diverging.
            However, this parameter can only be specified if *use_ptt* is `False`.

        Returns
        -------
        total_ridge_length_kms : float
            The total length of global mid-ocean ridges (in kilometres) at the specified time.

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.
        ValueError
            If `use_ptt` is `True` and `divergence_threshold_in_cm_per_yr` is not `None`.

        Examples
        --------
        To calculate the total length of mid-ocean ridges at 50Ma, but ignoring the transform segments (of the ridges):

            total_ridge_length_kms = plate_reconstruction.total_ridge_length(50)

        To do the same, but instead of ignoring transform segments include both ridge and transform segments,
        but only where orthogonal diverging velocities are greater than 0.2 cm/yr:

            total_ridge_length_kms = plate_reconstruction.total_ridge_length(50,
                    transform_segment_deviation_in_radians=None,
                    divergence_threshold_in_cm_per_yr=0.2)
        """
        ridge_data = self.tessellate_mid_ocean_ridges(
            time,
            ignore_warnings=ignore_warnings,
            use_ptt=use_ptt,
            spreading_feature_types=spreading_feature_types,
            transform_segment_deviation_in_radians=transform_segment_deviation_in_radians,
            include_network_boundaries=include_network_boundaries,
            divergence_threshold_in_cm_per_yr=divergence_threshold_in_cm_per_yr,
        )

        ridge_arcseg = ridge_data[:, 3]
        ridge_pt_lat = ridge_data[:, 1]

        total_ridge_length_kms = 0
        for i, segment in enumerate(ridge_arcseg):
            earth_radius = _tools.geocentric_radius(ridge_pt_lat[i]) / 1e3
            total_ridge_length_kms += np.deg2rad(segment) * earth_radius

        return total_ridge_length_kms

    def reconstruct_snapshot(
        self,
        reconstructable_features,
        time,
        *,
        anchor_plate_id=None,
        from_time=0,
    ):
        """Create a snapshot of reconstructed regular features (including motion paths and flowlines) at a specific geological time.

        Parameters
        ----------
        reconstructable_features : str/`os.PathLike`, or a sequence (eg, `list` or `tuple`) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>
            Regular reconstructable features (including motion paths and flowlines). Can be provided as a feature collection, or
            filename, or feature, or sequence of features, or a sequence (eg, list or tuple) of any combination of those four types.

        time : float, or pygplates.GeoTimeInstant
            The specific geological time to reconstruct to.

        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute).

        from_time : float, default=0
            The specific geological time to reconstruct *from*. By default, this is set to present day.
            If not set to 0 Ma (present day) then the geometry in `feature` is assumed to be a reconstructed snapshot
            at `from_time`, in which case it is reverse reconstructed to present day before reconstructing to `to_time`.
            Usually features should contain present day geometry but might contain reconstructed geometry in some cases,
            such as those generated by the reconstruction export in GPlates.

        Returns
        -------
        reconstruct_snapshot : pygplates.ReconstructSnapshot
            A [pygplates.ReconstructSnapshot](https://www.gplates.org/docs/pygplates/generated/pygplates.ReconstructSnapshot)
            of the specified reconstructable features reconstructed using the internal rotation model to the specified reconstruction time.
        """

        # If the features represent a snapshot at a *past* geological time then we need to reverse reconstruct them
        # such that they contain present-day geometry (not reconstructed geometry).
        if from_time != 0:
            # Extract the reconstructed features and clone them so we don't modify the caller's features.
            reconstructable_features = [
                feature.clone()
                for feature in pygplates.FeaturesFunctionArgument(
                    reconstructable_features
                ).get_features()
            ]
            # Reverse reconstruct in-place (modifies each feature's geometry).
            pygplates.reverse_reconstruct(
                reconstructable_features,
                self.rotation_model,
                from_time,
                anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            )

        return pygplates.ReconstructSnapshot(
            reconstructable_features,
            self.rotation_model,
            time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
        )

    def reconstruct(
        self,
        feature,
        to_time,
        from_time=0,
        anchor_plate_id=None,
        *,
        reconstruct_type=pygplates.ReconstructType.feature_geometry,
        group_with_feature=False,
    ):
        """Reconstructs regular geological features, motion paths or flowlines to a specific geological time.

        Parameters
        ----------
        feature : str/`os.PathLike`, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>
            The geological features to reconstruct. Can be provided as a feature collection, or filename,
            or feature, or sequence of features, or a sequence (eg, a list or tuple) of any combination of
            those four types.

        to_time : float, or pygplates.GeoTimeInstant
            The specific geological time to reconstruct to.

        from_time : float, default=0
            The specific geological time to reconstruct *from*. By default, this is set to present day.
            If not set to 0 Ma (present day) then the geometry in `feature` is assumed to be a reconstructed snapshot
            at `from_time`, in which case it is reverse reconstructed to present day before reconstructing to `to_time`.
            Usually features should contain present day geometry but might contain reconstructed geometry in some cases,
            such as those generated by the reconstruction export in GPlates.

        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute).

        reconstruct_type : pygplates.ReconstructType, default=pygplates.ReconstructType.feature_geometry
            The specific reconstruction type to generate based on input feature geometry type. Can be provided as
            pygplates.ReconstructType.feature_geometry to only reconstruct regular feature geometries, or
            pygplates.ReconstructType.motion_path to only reconstruct motion path features, or
            pygplates.ReconstructType.flowline to only reconstruct flowline features.
            Generates `pygplates.ReconstructedFeatureGeometry>`s, or `pygplates.ReconstructedMotionPath`s, or
            `pygplates.ReconstructedFlowline`s respectively.

        group_with_feature : bool, default=False
            Used to group reconstructed geometries with their features. This can be useful when a feature has more than one
            geometry and hence more than one reconstructed geometry. The returned list then becomes a list of tuples where
            each tuple contains a `pygplates.Feature` and a ``list`` of reconstructed geometries.

        Returns
        -------
        reconstructed_features : list
            The reconstructed geological features.
            The reconstructed geometries are output in the same order as that of their respective input features (in the
            parameter `features`). This includes the order across any input feature collections or files. If `group_with_feature`
            is True then the list contains tuples that group each `pygplates.Feature` with a list of its reconstructed geometries.

        See Also
        --------
        reconstruct_snapshot
        """
        reconstruct_snapshot = self.reconstruct_snapshot(
            feature,
            to_time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            from_time=from_time,
        )

        if group_with_feature:
            # These are always sorted in same order as the input features.
            return reconstruct_snapshot.get_reconstructed_features(reconstruct_type)
        else:
            return reconstruct_snapshot.get_reconstructed_geometries(
                reconstruct_type, same_order_as_reconstructable_features=True
            )

    def get_point_velocities(
        self,
        lons,
        lats,
        time,
        delta_time=1.0,
        *,
        velocity_delta_time_type=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t,
        velocity_units=pygplates.VelocityUnits.kms_per_my,
        earth_radius_in_kms=pygplates.Earth.mean_radius_in_kms,
        include_networks=True,
        include_topological_slab_boundaries=False,
        anchor_plate_id=None,
        return_east_north_arrays=False,
    ):
        """Calculates the north and east components of the velocity vector (in kms/myr) for each specified point (from `lons` and `lats`) at a particular geological `time`.

        Parameters
        ----------
        lons : array
            A 1D array of point data's longitudes.

        lats : array
            A 1D array of point data's latitudes.

        time : float
            The specific geological time (Ma) at which to calculate plate velocities.

        delta_time : float, default=1.0
            The time interval used for velocity calculations. 1.0Ma by default.

        velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
            How the two velocity times are calculated relative to `time` (defaults to ``[time + velocity_delta_time, time]``).

        velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.kms_per_my
            Whether to return velocities in centimetres per year or kilometres per million years (defaults to kilometres per million years).

        earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
            Radius of the Earth in kilometres.
            This is only used to calculate velocities (strain rates always use ``pygplates.Earth.equatorial_radius_in_kms``).

        include_networks : bool, default=True
            Whether to include deforming networks when calculating velocities.
            By default they are included (and also given precedence since they typically overlay a rigid plate).

        include_topological_slab_boundaries : bool, default=False
            Whether to include features of type `gpml:TopologicalSlabBoundary` when calculating velocities.
            By default they are **not** included (they tend to overlay a rigid plate which should instead be used to calculate plate velocity).

        anchor_plate_id : int, optional
            Anchor plate ID. Defaults to the current anchor plate ID (`anchor_plate_id` attribute).

        return_east_north_arrays : bool, default=False
            Return the velocities as arrays separately containing the east and north components of the velocities.
            Note that setting this to True matches the output of `points.plate_velocity`.

        Returns
        -------
        north_east_velocities : 2D ndarray
            Only provided if `return_east_north_arrays` is False.
            Each array element contains the (north, east) velocity components of a single point.
        east_velocities, north_velocities : 1D ndarray
            Only provided if `return_east_north_arrays` is True.
            The east and north components of velocities as separate arrays.
            These are also ordered (east, north) instead of (north, east).

        Raises
        ------
        ValueError
            If topology features have not been set in this `PlateReconstruction`.

        Notes
        -----
        The velocities are in *kilometres per million years* by default (not *centimetres per year*, the default in `Point.plate_velocity`).
        This difference is maintained for backward compatibility.

        For each velocity, the *north* component is first followed by the *east* component.
        This is different to `Point.plate_velocity` where the *east* component is first.
        This difference is maintained for backward compatibility.
        """
        # Add points to a multipoint geometry

        points = [pygplates.PointOnSphere(lat, lon) for lat, lon in zip(lats, lons)]

        topological_snapshot = self.topological_snapshot(
            time,
            anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            include_topological_slab_boundaries=include_topological_slab_boundaries,
        )

        # If requested, exclude resolved topological *networks*.
        resolve_topology_types = pygplates.ResolveTopologyType.boundary
        if include_networks:
            resolve_topology_types = (
                resolve_topology_types | pygplates.ResolveTopologyType.network
            )

        point_velocities = topological_snapshot.get_point_velocities(
            points,
            resolve_topology_types=resolve_topology_types,
            velocity_delta_time=delta_time,
            velocity_delta_time_type=velocity_delta_time_type,
            velocity_units=velocity_units,
            earth_radius_in_kms=earth_radius_in_kms,
        )

        # Replace any missing velocities with zero velocity.
        #
        # If a point does not intersect a topological plate (or network) then its velocity is None.
        for point_index in range(len(points)):
            if point_velocities[point_index] is None:
                point_velocities[point_index] = pygplates.Vector3D.zero

        # Convert global 3D velocity vectors to local (North, East, Down) vectors (one per point).
        point_velocities_north_east_down = (
            pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                points, point_velocities
            )
        )

        if return_east_north_arrays:
            # Extract the East and North velocity components into separate arrays.
            east_velocities = [ned.get_y() for ned in point_velocities_north_east_down]
            north_velocities = [ned.get_x() for ned in point_velocities_north_east_down]
            # Note: This is the opposite order (ie, (east,north) instead of (north,east)).
            return np.array(east_velocities), np.array(north_velocities)
        else:
            # Extract the North and East velocity components into a single array.
            north_east_velocities = [
                (ned.get_x(), ned.get_y()) for ned in point_velocities_north_east_down
            ]
            return np.array(north_east_velocities)

    def create_motion_path(
        self,
        lons,
        lats,
        time_array,
        plate_id=None,
        anchor_plate_id=None,
        return_rate_of_motion=False,
    ):
        """Create a path of points to mark the trajectory of a plate's motion
        through geological time.

        Parameters
        ----------
        lons : arr
            An array containing the longitudes of seed points on a plate in motion.
        lats : arr
            An array containing the latitudes of seed points on a plate in motion.
        time_array : arr
            An array of reconstruction times at which to determine the trajectory
            of a point on a plate. For example:

                import numpy as np
                min_time = 30
                max_time = 100
                time_step = 2.5
                time_array = np.arange(min_time, max_time + time_step, time_step)

        plate_id : int, optional
            The ID of the moving plate. If this is not passed, the plate ID of the
            seed points are ascertained using pygplates' `PlatePartitioner`.
        anchor_plate_id : int, optional
            The ID of the anchor plate. Defaults to the default anchor plate
            (specified in `__init__` or set with `anchor_plate_id` attribute).
        return_rate_of_motion : bool, default=False
            Choose whether to return the rate of plate motion through time for each

        Returns
        -------
        rlons : ndarray
            An n-dimensional array with columns containing the longitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        rlats : ndarray
            An n-dimensional array with columns containing the latitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        StepTimes
        StepRates

        Raises
        ------
        ValueError
            If *plate_id* is `None` and topology features have not been set in this `PlateReconstruction`.

        Examples
        --------
        To access the latitudes and longitudes of each seed point's motion path:

            for i in np.arange(0,len(seed_points)):
                current_lons = lon[:,i]
                current_lats = lat[:,i]
        """
        lons = np.atleast_1d(lons)
        lats = np.atleast_1d(lats)
        time_array = np.atleast_1d(time_array)

        # ndarrays to fill with reconstructed points and
        # rates of motion (if requested)
        rlons = np.empty((len(time_array), len(lons)))
        rlats = np.empty((len(time_array), len(lons)))

        if plate_id is None:
            query_plate_id = True
        else:
            query_plate_id = False
            plate_ids = np.ones(len(lons), dtype=int) * plate_id

        seed_points = zip(lats, lons)
        if return_rate_of_motion is True:
            StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
            StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))
        for i, lat_lon in enumerate(seed_points):
            seed_points_at_digitisation_time = pygplates.PointOnSphere(
                pygplates.LatLonPoint(float(lat_lon[0]), float(lat_lon[1]))
            )
            # Allocate the present-day plate ID to the PointOnSphere if
            # it was not given.
            if query_plate_id:
                plate_id = _tools.plate_partitioner_for_point(
                    lat_lon, self._check_topology_features(), self.rotation_model
                )
            else:
                plate_id = plate_ids[i]

            # Create the motion path feature. enforce float and int for C++ signature.
            motion_path_feature = pygplates.Feature.create_motion_path(
                seed_points_at_digitisation_time,
                time_array,
                valid_time=(time_array.max(), time_array.min()),
                relative_plate=(  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
                    anchor_plate_id
                    if anchor_plate_id is not None
                    else self.anchor_plate_id
                ),
                reconstruction_plate_id=int(plate_id),
            )

            reconstructed_motion_paths = self.reconstruct(
                motion_path_feature,
                to_time=0,
                reconstruct_type=pygplates.ReconstructType.motion_path,
                anchor_plate_id=anchor_plate_id,  # if None then uses 'self.anchor_plate_id' (default anchor plate of 'self.rotation_model')
            )
            # Turn motion paths in to lat-lon coordinates
            for reconstructed_motion_path in reconstructed_motion_paths:
                trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

            lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

            rlons[:, i] = lon
            rlats[:, i] = lat

            # Obtain step-plot coordinates for rate of motion
            if return_rate_of_motion is True:
                # Get timestep
                TimeStep = []
                for j in range(len(time_array) - 1):
                    diff = time_array[j + 1] - time_array[j]
                    TimeStep.append(diff)

                # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
                # plate relative to the fixed plate in each time step
                Dist = []
                for reconstructed_motion_path in reconstructed_motion_paths:
                    for (
                        segment
                    ) in reconstructed_motion_path.get_motion_path().get_segments():
                        Dist.append(
                            segment.get_arc_length()
                            * _tools.geocentric_radius(
                                segment.get_start_point().to_lat_lon()[0]
                            )
                            / 1e3
                        )

                # Note that the motion path coordinates come out starting with the oldest time and working forwards
                # So, to match our 'times' array, we flip the order
                Dist = np.flipud(Dist)

                # Get rate of motion as distance per Myr
                Rate = np.asarray(Dist) / TimeStep

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

                # Obseleted by Lauren's changes above (though it is more efficient)
                # multiply arc length of the motion path segment by a latitude-dependent Earth radius
                # use latitude of the segment start point
                # distance.append( segment.get_arc_length() * _tools.geocentric_radius(segment.get_start_point().to_lat_lon()[0]) / 1e3)
                # rate = np.asarray(distance)/np.diff(time_array)
                # rates[:,i] = np.flipud(rate)
                # rates *= 0.1 # cm/yr

        if return_rate_of_motion is True:
            return (
                np.squeeze(rlons),
                np.squeeze(rlats),
                np.squeeze(StepTimes),
                np.squeeze(StepRates),
            )
        else:
            return np.squeeze(rlons), np.squeeze(rlats)

    def create_flowline(
        self,
        lons,
        lats,
        time_array,
        left_plate_ID,
        right_plate_ID,
        return_rate_of_motion=False,
    ):
        """Create a path of points to track plate motion away from
        spreading ridges over time using half-stage rotations.

        Parameters
        ----------
        lons : arr
            An array of longitudes of points along spreading ridges.
        lats : arr
            An array of latitudes of points along spreading ridges.
        time_array : arr
            A list of times to obtain seed point locations at.
        left_plate_ID : int
            The plate ID of the polygon to the left of the spreading
            ridge.
        right_plate_ID : int
            The plate ID of the polygon to the right of the spreading
            ridge.
        return_rate_of_motion : bool, default False
            Choose whether to return a step time and step rate array
            for a step plot of motion.

        Returns
        -------
        left_lon : ndarray
            The longitudes of the __left__ flowline for n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        left_lat : ndarray
            The latitudes of the __left__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lon : ndarray
            The longitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lat : ndarray
            The latitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.

        Examples
        --------
        To access the ith seed point's left and right latitudes and
        longitudes:

            for i in np.arange(0,len(seed_points)):
                left_flowline_longitudes = left_lon[:,i]
                left_flowline_latitudes = left_lat[:,i]
                right_flowline_longitudes = right_lon[:,i]
                right_flowline_latitudes = right_lat[:,i]
        """
        lats = np.atleast_1d(lats)
        lons = np.atleast_1d(lons)
        time_array = np.atleast_1d(time_array)

        seed_points = list(zip(lats, lons))
        multi_point = pygplates.MultiPointOnSphere(seed_points)

        start = 0
        if time_array[0] != 0:
            start = 1
            time_array = np.hstack([[0], time_array])

        # Create the flowline feature
        flowline_feature = pygplates.Feature.create_flowline(
            multi_point,
            time_array.tolist(),
            valid_time=(time_array.max(), time_array.min()),
            left_plate=left_plate_ID,
            right_plate=right_plate_ID,
        )

        # reconstruct the flowline in present-day coordinates
        reconstructed_flowlines = self.reconstruct(
            flowline_feature,
            to_time=0,
            reconstruct_type=pygplates.ReconstructType.flowline,
        )

        # Wrap things to the dateline, to avoid plotting artefacts.
        date_line_wrapper = pygplates.DateLineWrapper()

        # Create lat-lon ndarrays to store the left and right lats and lons of flowlines
        left_lon = np.empty((len(time_array), len(lons)))
        left_lat = np.empty((len(time_array), len(lons)))
        right_lon = np.empty((len(time_array), len(lons)))
        right_lat = np.empty((len(time_array), len(lons)))
        StepTimes = np.empty(((len(time_array) - 1) * 2, len(lons)))
        StepRates = np.empty(((len(time_array) - 1) * 2, len(lons)))

        # Iterate over the reconstructed flowlines. Each seed point results in a 'left' and 'right' flowline
        for i, reconstructed_flowline in enumerate(reconstructed_flowlines):
            # Get the points for the left flowline only
            left_latlon = reconstructed_flowline.get_left_flowline().to_lat_lon_array()
            left_lon[:, i] = left_latlon[:, 1]
            left_lat[:, i] = left_latlon[:, 0]

            # Repeat for the right flowline points
            right_latlon = (
                reconstructed_flowline.get_right_flowline().to_lat_lon_array()
            )
            right_lon[:, i] = right_latlon[:, 1]
            right_lat[:, i] = right_latlon[:, 0]

        if return_rate_of_motion:
            for i, reconstructed_motion_path in enumerate(reconstructed_flowlines):
                distance = []
                for (
                    segment
                ) in reconstructed_motion_path.get_left_flowline().get_segments():
                    distance.append(
                        segment.get_arc_length()
                        * _tools.geocentric_radius(
                            segment.get_start_point().to_lat_lon()[0]
                        )
                        / 1e3
                    )

                # Get rate of motion as distance per Myr
                # Need to multiply rate by 2, since flowlines give us half-spreading rate
                time_step = time_array[1] - time_array[0]
                Rate = (
                    np.asarray(distance) / time_step
                ) * 2  # since we created the flowline at X increment

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

            return (
                left_lon[start:],
                left_lat[start:],
                right_lon[start:],
                right_lat[start:],
                StepTimes,
                StepRates,
            )

        else:
            return (
                left_lon[start:],
                left_lat[start:],
                right_lon[start:],
                right_lat[start:],
            )

Instance variables

prop anchor_plate_id

Anchor plate ID for reconstruction. Must be an integer >= 0.

Expand source code
@property
def anchor_plate_id(self):
    """Anchor plate ID for reconstruction. Must be an integer >= 0."""
    # The default anchor plate comes from the RotationModel.
    return self.rotation_model.get_default_anchor_plate_id()

Methods

def create_flowline(self, lons, lats, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False)

Create a path of points to track plate motion away from spreading ridges over time using half-stage rotations.

Parameters

lons : arr
An array of longitudes of points along spreading ridges.
lats : arr
An array of latitudes of points along spreading ridges.
time_array : arr
A list of times to obtain seed point locations at.
left_plate_ID : int
The plate ID of the polygon to the left of the spreading ridge.
right_plate_ID : int
The plate ID of the polygon to the right of the spreading ridge.
return_rate_of_motion : bool, default False
Choose whether to return a step time and step rate array for a step plot of motion.

Returns

left_lon : ndarray
The longitudes of the left flowline for n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
left_lat : ndarray
The latitudes of the left flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lon : ndarray
The longitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lat : ndarray
The latitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.

Examples

To access the ith seed point's left and right latitudes and longitudes:

for i in np.arange(0,len(seed_points)):
    left_flowline_longitudes = left_lon[:,i]
    left_flowline_latitudes = left_lat[:,i]
    right_flowline_longitudes = right_lon[:,i]
    right_flowline_latitudes = right_lat[:,i]
def create_motion_path(self, lons, lats, time_array, plate_id=None, anchor_plate_id=None, return_rate_of_motion=False)

Create a path of points to mark the trajectory of a plate's motion through geological time.

Parameters

lons : arr
An array containing the longitudes of seed points on a plate in motion.
lats : arr
An array containing the latitudes of seed points on a plate in motion.
time_array : arr
An array of reconstruction times at which to determine the trajectory of a point on a plate. For example:
import numpy as np
min_time = 30
max_time = 100
time_step = 2.5
time_array = np.arange(min_time, max_time + time_step, time_step)
plate_id : int, optional
The ID of the moving plate. If this is not passed, the plate ID of the seed points are ascertained using pygplates' PlatePartitioner.
anchor_plate_id : int, optional
The ID of the anchor plate. Defaults to the default anchor plate (specified in __init__ or set with anchor_plate_id attribute).
return_rate_of_motion : bool, default=False
Choose whether to return the rate of plate motion through time for each

Returns

rlons : ndarray
An n-dimensional array with columns containing the longitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
rlats : ndarray
An n-dimensional array with columns containing the latitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
StepTimes
 
StepRates
 

Raises

ValueError
If plate_id is None and topology features have not been set in this PlateReconstruction.

Examples

To access the latitudes and longitudes of each seed point's motion path:

for i in np.arange(0,len(seed_points)):
    current_lons = lon[:,i]
    current_lats = lat[:,i]
def crustal_production_destruction_rate(self, time, uniform_point_spacing_radians=0.001, divergence_velocity_threshold_in_cms_per_yr=0.0, convergence_velocity_threshold_in_cms_per_yr=0.0, *, first_uniform_point_spacing_radians=None, velocity_delta_time=1.0, velocity_delta_time_type=pygplates.pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, include_network_boundaries=False, include_topological_slab_boundaries=False, boundary_section_filter=None)

Calculates the total crustal production and destruction rates (in km^2/yr) of divergent and convergent plate boundaries at the specified geological time (Ma).

Resolves topologies at time and uniformly samples all plate boundaries into divergent and convergent boundary points.

Total crustal production (and destruction) rate is then calculated by accumulating divergent (and convergent) orthogonal velocities multiplied by their local boundary lengths. Velocities and lengths are scaled using the geocentric radius (at each divergent and convergent sampled point).

Parameters

time : float
The reconstruction time (Ma) at which to query divergent/convergent plate boundaries.
uniform_point_spacing_radians : float, default=0.001
The spacing between uniform points along plate boundaries (in radians).
divergence_velocity_threshold_in_cms_per_yr : float, default=0.0
Orthogonal (ie, in the direction of boundary normal) velocity threshold for diverging sample points. Points with an orthogonal diverging velocity above this value will accumulate crustal production. The default is 0.0 which removes all converging sample points (leaving only diverging points). This value can be negative which means a small amount of convergence is allowed for the diverging points. The units should be in cm/yr.
convergence_velocity_threshold_in_cms_per_yr : float, default=0.0
Orthogonal (ie, in the direction of boundary normal) velocity threshold for converging sample points. Points with an orthogonal converging velocity above this value will accumulate crustal destruction. The default is 0.0 which removes all diverging sample points (leaving only converging points). This value can be negative which means a small amount of divergence is allowed for the converging points. The units should be in cm/yr.
first_uniform_point_spacing_radians : float, optional
Spacing of first uniform point in each resolved topological section (in radians) - see divergent_convergent_plate_boundaries() for more details. Defaults to half of uniform_point_spacing_radians.
velocity_delta_time : float, default=1.0
The time delta used to calculate velocities (defaults to 1 Myr).
velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
How the two velocity times are calculated relative to time (defaults to [time + velocity_delta_time, time]).
include_network_boundaries : bool, default=False
Whether to sample along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
include_topological_slab_boundaries : bool, default=False
Whether to sample along slab boundaries (features of type gpml:TopologicalSlabBoundary). By default they are not sampled since they are not plate boundaries.
boundary_section_filter
Same as the boundary_section_filter argument in divergent_convergent_plate_boundaries(). Defaults to None (meaning all plate boundaries are included by default).

Returns

total_crustal_production_rate_in_km_2_per_yr : float
The total rate of crustal production at divergent plate boundaries (in km^2/yr) at the specified time.
total_crustal_destruction_rate_in_km_2_per_yr : float
The total rate of crustal destruction at convergent plate boundaries (in km^2/yr) at the specified time.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.

Examples

To calculate total crustal production/destruction along plate boundaries at 50Ma:

total_crustal_production_rate_in_km_2_per_yr, total_crustal_destruction_rate_in_km_2_per_yr = plate_reconstruction.crustal_production_destruction_rate(50)

To do the same, but restrict convergence to points where orthogonal converging velocities are greater than 0.2 cm/yr (with divergence remaining unchanged with the default 0.0 threshold):

total_crustal_production_rate_in_km_2_per_yr, total_crustal_destruction_rate_in_km_2_per_yr = plate_reconstruction.crustal_production_destruction_rate(50,
        convergence_velocity_threshold_in_cms_per_yr=0.2)
def divergent_convergent_plate_boundaries(self, time, uniform_point_spacing_radians=0.001, divergence_velocity_threshold=0.0, convergence_velocity_threshold=0.0, *, first_uniform_point_spacing_radians=None, anchor_plate_id=None, velocity_delta_time=1.0, velocity_delta_time_type=pygplates.pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, velocity_units=pygplates.pygplates.VelocityUnits.cms_per_yr, earth_radius_in_kms=6371.009, include_network_boundaries=False, include_topological_slab_boundaries=False, boundary_section_filter=None)

Samples points uniformly along plate boundaries and calculates statistics at diverging/converging locations at a particular geological time.

Resolves topologies at time, uniformly samples all plate boundaries into points and returns two lists of pygplates.PlateBoundaryStatistic. The first list represents sample points where the plates are diverging, and the second where plates are converging.

Parameters

time : float
The reconstruction time (Ma) at which to query divergent/convergent plate boundaries.
uniform_point_spacing_radians : float, default=0.001
The spacing between uniform points along plate boundaries (in radians).
divergence_velocity_threshold : float, default=0.0
Orthogonal (ie, in the direction of boundary normal) velocity threshold for diverging sample points. Points with an orthogonal diverging velocity above this value will be returned in diverging_data. The default is 0.0 which removes all converging sample points (leaving only diverging points). This value can be negative which means a small amount of convergence is allowed for the diverging points. The units should match the units of velocity_units (eg, if that's cm/yr then this threshold should also be in cm/yr).
convergence_velocity_threshold : float, default=0.0
Orthogonal (ie, in the direction of boundary normal) velocity threshold for converging sample points. Points with an orthogonal converging velocity above this value will be returned in converging_data. The default is 0.0 which removes all diverging sample points (leaving only converging points). This value can be negative which means a small amount of divergence is allowed for the converging points. The units should match the units of velocity_units (eg, if that's cm/yr then this threshold should also be in cm/yr).
first_uniform_point_spacing_radians : float, optional
Spacing of first uniform point in each resolved topological section (in radians) - see pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics() for more details. Defaults to half of uniform_point_spacing_radians.
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute).
velocity_delta_time : float, default=1.0
The time delta used to calculate velocities (defaults to 1 Myr).
velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
How the two velocity times are calculated relative to time (defaults to [time + velocity_delta_time, time]).
velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.cms_per_yr
Whether to return velocities in centimetres per year or kilometres per million years (defaults to centimetres per year).
earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
Radius of the Earth in kilometres. This is only used to calculate velocities (strain rates always use pygplates.Earth.equatorial_radius_in_kms).
include_network_boundaries : bool, default=False
Whether to sample along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option.
include_topological_slab_boundaries : bool, default=False
Whether to sample along slab boundaries (features of type gpml:TopologicalSlabBoundary). By default they are not sampled since they are not plate boundaries.
boundary_section_filter
Same as the boundary_section_filter argument in pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics(). Defaults to None (meaning all plate boundaries are included by default).

Returns

diverging_data : list of pygplates.PlateBoundaryStatistic
The results for all uniformly sampled points along plate boundaries that are diverging relative to divergence_threshold. The size of the returned list is equal to the number of sampled points that are diverging. Each pygplates.PlateBoundaryStatistic is guaranteed to have a valid (ie, not None) convergence velocity.
converging_data : list of pygplates.PlateBoundaryStatistic
The results for all uniformly sampled points along plate boundaries that are converging relative to convergence_threshold. The size of the returned list is equal to the number of sampled points that are converging. Each pygplates.PlateBoundaryStatistic is guaranteed to have a valid (ie, not None) convergence velocity.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.

Examples

To sample diverging/converging points along plate boundaries at 50Ma:

diverging_data, converging_data = plate_reconstruction.divergent_convergent_plate_boundaries(50)

To do the same, but restrict converging data to points where orthogonal converging velocities are greater than 0.2 cm/yr (with diverging data remaining unchanged with the default 0.0 threshold):

diverging_data, converging_data = plate_reconstruction.divergent_convergent_plate_boundaries(50,
        convergence_velocity_threshold=0.2)

Notes

If you want to access all sampled points regardless of their convergence/divergence you can call topological_snapshot() and then use it to directly call pygplates.TopologicalSnapshot.calculate_plate_boundary_statistics(). Then you can do your own analysis on the returned data:

plate_boundary_statistics = plate_reconstruction.topological_snapshot(
    time,
    include_topological_slab_boundaries=False
).calculate_plate_boundary_statistics(
    uniform_point_spacing_radians=0.001
)

for stat in plate_boundary_statistics:
    if np.isnan(stat.convergence_velocity_orthogonal)
        continue  # missing left or right plate
    latitude, longitude = stat.boundary_point.to_lat_lon()
def get_point_velocities(self, lons, lats, time, delta_time=1.0, *, velocity_delta_time_type=pygplates.pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, velocity_units=pygplates.pygplates.VelocityUnits.kms_per_my, earth_radius_in_kms=6371.009, include_networks=True, include_topological_slab_boundaries=False, anchor_plate_id=None, return_east_north_arrays=False)

Calculates the north and east components of the velocity vector (in kms/myr) for each specified point (from lons and lats) at a particular geological time.

Parameters

lons : array
A 1D array of point data's longitudes.
lats : array
A 1D array of point data's latitudes.
time : float
The specific geological time (Ma) at which to calculate plate velocities.
delta_time : float, default=1.0
The time interval used for velocity calculations. 1.0Ma by default.
velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
How the two velocity times are calculated relative to time (defaults to [time + velocity_delta_time, time]).
velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.kms_per_my
Whether to return velocities in centimetres per year or kilometres per million years (defaults to kilometres per million years).
earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
Radius of the Earth in kilometres. This is only used to calculate velocities (strain rates always use pygplates.Earth.equatorial_radius_in_kms).
include_networks : bool, default=True
Whether to include deforming networks when calculating velocities. By default they are included (and also given precedence since they typically overlay a rigid plate).
include_topological_slab_boundaries : bool, default=False
Whether to include features of type gpml:TopologicalSlabBoundary when calculating velocities. By default they are not included (they tend to overlay a rigid plate which should instead be used to calculate plate velocity).
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute).
return_east_north_arrays : bool, default=False
Return the velocities as arrays separately containing the east and north components of the velocities. Note that setting this to True matches the output of points.plate_velocity.

Returns

north_east_velocities : 2D ndarray
Only provided if return_east_north_arrays is False. Each array element contains the (north, east) velocity components of a single point.
east_velocities, north_velocities : 1D ndarray
Only provided if return_east_north_arrays is True. The east and north components of velocities as separate arrays. These are also ordered (east, north) instead of (north, east).

Raises

ValueError
If topology features have not been set in this PlateReconstruction.

Notes

The velocities are in kilometres per million years by default (not centimetres per year, the default in Point.plate_velocity). This difference is maintained for backward compatibility.

For each velocity, the north component is first followed by the east component. This is different to Point.plate_velocity where the east component is first. This difference is maintained for backward compatibility.

def reconstruct(self, feature, to_time, from_time=0, anchor_plate_id=None, *, reconstruct_type=pygplates.pygplates.ReconstructType.feature_geometry, group_with_feature=False)

Reconstructs regular geological features, motion paths or flowlines to a specific geological time.

Parameters

feature : str/os.PathLike, or instance of <pygplates.FeatureCollection>, or <pygplates.Feature>, or sequence of <pygplates.Feature>
The geological features to reconstruct. Can be provided as a feature collection, or filename, or feature, or sequence of features, or a sequence (eg, a list or tuple) of any combination of those four types.
to_time : float, or pygplates.GeoTimeInstant
The specific geological time to reconstruct to.
from_time : float, default=0
The specific geological time to reconstruct from. By default, this is set to present day. If not set to 0 Ma (present day) then the geometry in feature is assumed to be a reconstructed snapshot at from_time, in which case it is reverse reconstructed to present day before reconstructing to to_time. Usually features should contain present day geometry but might contain reconstructed geometry in some cases, such as those generated by the reconstruction export in GPlates.
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute).
reconstruct_type : pygplates.ReconstructType, default=pygplates.ReconstructType.feature_geometry
The specific reconstruction type to generate based on input feature geometry type. Can be provided as pygplates.ReconstructType.feature_geometry to only reconstruct regular feature geometries, or pygplates.ReconstructType.motion_path to only reconstruct motion path features, or pygplates.ReconstructType.flowline to only reconstruct flowline features. Generates pygplates.ReconstructedFeatureGeometry>s, or pygplates.ReconstructedMotionPaths, or pygplates.ReconstructedFlowlines respectively.
group_with_feature : bool, default=False
Used to group reconstructed geometries with their features. This can be useful when a feature has more than one geometry and hence more than one reconstructed geometry. The returned list then becomes a list of tuples where each tuple contains a pygplates.Feature and a list of reconstructed geometries.

Returns

reconstructed_features : list
The reconstructed geological features. The reconstructed geometries are output in the same order as that of their respective input features (in the parameter features). This includes the order across any input feature collections or files. If group_with_feature is True then the list contains tuples that group each pygplates.Feature with a list of its reconstructed geometries.

See Also

reconstruct_snapshot

def reconstruct_snapshot(self, reconstructable_features, time, *, anchor_plate_id=None, from_time=0)

Create a snapshot of reconstructed regular features (including motion paths and flowlines) at a specific geological time.

Parameters

reconstructable_features : str/os.PathLike, or a sequence (eg, list or tuple) of instances of <pygplates.Feature>, or a single instance of <pygplates.Feature>, or an instance of <pygplates.FeatureCollection>
Regular reconstructable features (including motion paths and flowlines). Can be provided as a feature collection, or filename, or feature, or sequence of features, or a sequence (eg, list or tuple) of any combination of those four types.
time : float, or pygplates.GeoTimeInstant
The specific geological time to reconstruct to.
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute).
from_time : float, default=0
The specific geological time to reconstruct from. By default, this is set to present day. If not set to 0 Ma (present day) then the geometry in feature is assumed to be a reconstructed snapshot at from_time, in which case it is reverse reconstructed to present day before reconstructing to to_time. Usually features should contain present day geometry but might contain reconstructed geometry in some cases, such as those generated by the reconstruction export in GPlates.

Returns

reconstruct_snapshot : pygplates.ReconstructSnapshot
A pygplates.ReconstructSnapshot of the specified reconstructable features reconstructed using the internal rotation model to the specified reconstruction time.
def static_polygons_snapshot(self, time, *, anchor_plate_id=None)

Create a reconstructed snapshot of the static polygons at the specified reconstruction time.

This returns a pygplates.ReconstructSnapshot from which you can extract reconstructed static polygons, find reconstructed polygons containing points and calculate velocities at point locations, etc.

Parameters

time : float, int or pygplates.GeoTimeInstant
The geological time at which to create the reconstructed static polygons snapshot.
anchor_plate_id : int, optional
The anchored plate id to use when reconstructing the static polygons. If not specified then uses the current anchor plate (anchor_plate_id attribute).

Returns

static_polygons_snapshot : pygplates.ReconstructSnapshot
The reconstructed static polygons snapshot at the specified time (and anchor plate).

Raises

ValueError
If static polygons have not been set in this PlateReconstruction.
def tessellate_mid_ocean_ridges(self, time, tessellation_threshold_radians=0.001, ignore_warnings=False, return_geodataframe=False, *, use_ptt=False, spreading_feature_types=[<pygplates.pygplates.FeatureType object>], transform_segment_deviation_in_radians=1.2217304763960306, include_network_boundaries=False, divergence_threshold_in_cm_per_yr=None, output_obliquity_and_normal_and_left_right_plates=False, anchor_plate_id=None, velocity_delta_time=1.0)

Samples points along resolved spreading features (e.g. mid-ocean ridges) and calculates spreading rates and lengths of ridge segments at a particular geological time.

Resolves topologies at time and tessellates all resolved spreading features into points.

The transform segments of spreading features are ignored (unless transform_segment_deviation_in_radians is None).

Returns a 4-column vertically stacked tuple with the following data per sampled ridge point (depending on output_obliquity_and_normal_and_left_right_plates):

If output_obliquity_and_normal_and_left_right_plates is False (the default):

  • Col. 0 - longitude of sampled ridge point
  • Col. 1 - latitude of sampled ridge point
  • Col. 2 - spreading velocity magnitude (in cm/yr)
  • Col. 3 - length of arc segment (in degrees) that current point is on

If output_obliquity_and_normal_and_left_right_plates is True:

  • Col. 0 - longitude of sampled ridge point
  • Col. 1 - latitude of sampled ridge point
  • Col. 2 - spreading velocity magnitude (in cm/yr)
  • Col. 3 - spreading obliquity in degrees (deviation from normal line in range 0 to 90 degrees)
  • Col. 4 - length of arc segment (in degrees) that current point is on
  • Col. 5 - azimuth of vector normal to the arc segment in degrees (clockwise starting at North, ie, 0 to 360 degrees)
  • Col. 6 - left plate ID
  • Col. 7 - right plate ID

Parameters

time : float
The reconstruction time (Ma) at which to query spreading rates.
tessellation_threshold_radians : float, default=0.001
The threshold sampling distance along the plate boundaries (in radians).
ignore_warnings : bool, default=False
Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow (if use_ptt is True).
return_geodataframe : bool, default=False
Choose to return data in a geopandas.GeoDataFrame.
use_ptt : bool, default=False
If set to True then uses Plate Tectonic Tools' ridge_spreading_rate workflow to calculate ridge spreading rates (which uses the spreading stage rotation of the left/right plate IDs calculate spreading velocities). If set to False then uses plate divergence to calculate ridge spreading rates (which samples velocities of the two adjacent boundary plates at each sampled point to calculate spreading velocities). Plate divergence is the more general approach that works along all plate boundaries (not just mid-ocean ridges).
spreading_feature_types : <pygplates.FeatureType> or sequence of <pygplates.FeatureType>, default=pygplates.FeatureType.gpml_mid_ocean_ridge
Only sample points along plate boundaries of the specified feature types. Default is to only sample mid-ocean ridges. You can explicitly specify None to sample all plate boundaries, but note that if use_ptt is True then only plate boundaries that are spreading feature types are sampled (since Plate Tectonic Tools only works on spreading plate boundaries, eg, mid-ocean ridges).
transform_segment_deviation_in_radians : float, default=<implementation-defined>
How much a spreading direction can deviate from the segment normal before it's considered a transform segment (in radians). The default value has been empirically determined to give the best results for typical models. If None then the full feature geometry is used (ie, it is not split into ridge and transform segments with the transform segments getting ignored).
include_network_boundaries : bool, default=False
Whether to calculate spreading rate along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option. Since spreading features occur along plate boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as spreading.
divergence_threshold_in_cm_per_yr : float, optional
Only return sample points with an orthogonal (ie, in the spreading geometry's normal direction) diverging velocity above this value (in cm/yr). For example, setting this to 0.0 would remove all converging sample points (leaving only diverging points). This value can be negative which means a small amount of convergence is allowed. If None then all (diverging and converging) sample points are returned. This is the default since spreading_feature_types is instead used (by default) to include only plate boundaries that are typically diverging (eg, mid-ocean ridges). However, setting spreading_feature_types to None (and transform_segment_deviation_in_radians to None) and explicitly specifying this parameter (eg, to 0.0) can be used to find points along all plate boundaries that are diverging. However, this parameter can only be specified if use_ptt is False.
output_obliquity_and_normal_and_left_right_plates : bool, default=False
Whether to also return spreading obliquity, normal azimuth and left/right plates.
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute)..
velocity_delta_time : float, default=1.0
Velocity delta time used in spreading velocity calculations (defaults to 1 Myr).

Returns

ridge_data : a list of vertically-stacked tuples

The results for all tessellated points sampled along the mid-ocean ridges. The size of the returned list is equal to the number of tessellated points. Each tuple in the list corresponds to a tessellated point and has the following tuple items (depending on output_obliquity_and_normal_and_left_right_plates):

If output_obliquity_and_normal_and_left_right_plates is False (the default):

  • longitude of sampled point
  • latitude of sampled point
  • spreading velocity magnitude (in cm/yr)
  • length of arc segment (in degrees) that sampled point is on

If output_obliquity_and_normal_and_left_right_plates is True:

  • longitude of sampled point
  • latitude of sampled point
  • spreading velocity magnitude (in cm/yr)
  • spreading obliquity in degrees (deviation from normal line in range 0 to 90 degrees)
  • length of arc segment (in degrees) that sampled point is on
  • azimuth of vector normal to the arc segment in degrees (clockwise starting at North, ie, 0 to 360 degrees)
  • left plate ID
  • right plate ID

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
ValueError
If use_ptt is True and divergence_threshold_in_cm_per_yr is not None.

Notes

If use_ptt is False then each ridge segment is sampled at exactly uniform intervals along its length such that the sampled points have a uniform spacing (along each ridge segment polyline) that is equal to tessellation_threshold_radians. If use_ptt is True then each ridge segment is sampled at approximately uniform intervals along its length such that the sampled points have a uniform spacing (along each ridge segment polyline) that is less than or equal to tessellation_threshold_radians.

Examples

To sample points along mid-ocean ridges at 50Ma, but ignoring the transform segments (of the ridges):

ridge_data = plate_reconstruction.tessellate_mid_ocean_ridges(50)

To do the same, but instead of ignoring transform segments include both ridge and transform segments, but only where orthogonal diverging velocities are greater than 0.2 cm/yr:

ridge_data = plate_reconstruction.tessellate_mid_ocean_ridges(50,
        transform_segment_deviation_in_radians=None,
        divergence_threshold_in_cm_per_yr=0.2)
def tessellate_subduction_zones(self, time, tessellation_threshold_radians=0.001, ignore_warnings=False, return_geodataframe=False, *, use_ptt=False, include_network_boundaries=False, convergence_threshold_in_cm_per_yr=None, anchor_plate_id=None, velocity_delta_time=1.0, output_distance_to_nearest_edge_of_trench=False, output_distance_to_start_edge_of_trench=False, output_convergence_velocity_components=False, output_trench_absolute_velocity_components=False, output_subducting_absolute_velocity=False, output_subducting_absolute_velocity_components=False, output_trench_normal=False)

Samples points along subduction zone trenches and obtains subduction data at a particular geological time.

Resolves topologies at time and tessellates all resolved subducting features into points.

Returns a 10-column vertically-stacked tuple with the following data per sampled trench point:

  • Col. 0 - longitude of sampled trench point
  • Col. 1 - latitude of sampled trench point
  • Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
  • Col. 3 - subducting convergence velocity obliquity angle in degrees (angle between trench normal vector and convergence velocity vector)
  • Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
  • Col. 5 - trench absolute velocity obliquity angle in degrees (angle between trench normal vector and trench absolute velocity vector)
  • Col. 6 - length of arc segment (in degrees) that current point is on
  • Col. 7 - trench normal (in subduction direction, ie, towards overriding plate) azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
  • Col. 8 - subducting plate ID
  • Col. 9 - trench plate ID

The optional 'output_*' parameters can be used to append extra data to the output tuple of each sampled trench point. The order of any extra data is the same order in which the parameters are listed below.

Parameters

time : float
The reconstruction time (Ma) at which to query subduction convergence.
tessellation_threshold_radians : float, default=0.001
The threshold sampling distance along the plate boundaries (in radians).
ignore_warnings : bool, default=False
Choose to ignore warnings from Plate Tectonic Tools' subduction_convergence workflow (if use_ptt is True).
return_geodataframe : bool, default=False
Choose to return data in a geopandas.GeoDataFrame.
use_ptt : bool, default=False
If set to True then uses Plate Tectonic Tools' subduction_convergence workflow to calculate subduction convergence (which uses the subducting stage rotation of the subduction/trench plate IDs calculate subducting velocities). If set to False then uses plate convergence to calculate subduction convergence (which samples velocities of the two adjacent boundary plates at each sampled point to calculate subducting velocities). Both methods ignore plate boundaries that do not have a subduction polarity (feature property), which essentially means they only sample subduction zones.
include_network_boundaries : bool, default=False
Whether to calculate subduction convergence along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option. Since subduction zones occur along plate boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
convergence_threshold_in_cm_per_yr : float, optional
Only return sample points with an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr). For example, setting this to 0.0 would remove all diverging sample points (leaving only converging points). This value can be negative which means a small amount of divergence is allowed. If None then all (converging and diverging) sample points are returned. This is the default. Note that this parameter can only be specified if use_ptt is False.
anchor_plate_id : int, optional
Anchor plate ID. Defaults to the current anchor plate ID (anchor_plate_id attribute)..
velocity_delta_time : float, default=1.0
Velocity delta time used in convergence velocity calculations (defaults to 1 Myr).
output_distance_to_nearest_edge_of_trench : bool, default=False
Append the distance (in degrees) along the trench line to the nearest trench edge to each returned sample point. A trench edge is the farthermost location on the current trench feature that contributes to a plate boundary.
output_distance_to_start_edge_of_trench : bool, default=False
Append the distance (in degrees) along the trench line from the start edge of the trench to each returned sample point. The start of the trench is along the clockwise direction around the overriding plate.
output_convergence_velocity_components : bool, default=False
Append the convergence velocity orthogonal and parallel components (in cm/yr) to each returned sample point. Orthogonal is normal to trench (in direction of overriding plate when positive). Parallel is along trench (90 degrees clockwise from trench normal when positive).
output_trench_absolute_velocity_components : bool, default=False
Append the trench absolute velocity orthogonal and parallel components (in cm/yr) to each returned sample point. Orthogonal is normal to trench (in direction of overriding plate when positive). Parallel is along trench (90 degrees clockwise from trench normal when positive).
output_subducting_absolute_velocity : bool, default=False
Append the subducting plate absolute velocity magnitude (in cm/yr) and obliquity angle (in degrees) to each returned sample point.
output_subducting_absolute_velocity_components : bool, default=False
Append the subducting plate absolute velocity orthogonal and parallel components (in cm/yr) to each returned sample point. Orthogonal is normal to trench (in direction of overriding plate when positive). Parallel is along trench (90 degrees clockwise from trench normal when positive).
output_trench_normal : bool, default=False
Append the x, y and z components of the trench normal unit-length 3D vectors. These vectors are normal to the trench in the direction of subduction (towards overriding plate). These are global 3D vectors which differ from trench normal azimuth angles (ie, angles relative to North).

Returns

subduction_data : a list of vertically-stacked tuples

The results for all tessellated points sampled along the trench. The size of the returned list is equal to the number of tessellated points. Each tuple in the list corresponds to a tessellated point and has the following tuple items:

  • Col. 0 - longitude of sampled trench point
  • Col. 1 - latitude of sampled trench point
  • Col. 2 - subducting convergence (relative to trench) velocity magnitude (in cm/yr)
  • Col. 3 - subducting convergence velocity obliquity angle in degrees (angle between trench normal vector and convergence velocity vector)
  • Col. 4 - trench absolute (relative to anchor plate) velocity magnitude (in cm/yr)
  • Col. 5 - trench absolute velocity obliquity angle in degrees (angle between trench normal vector and trench absolute velocity vector)
  • Col. 6 - length of arc segment (in degrees) that current point is on
  • Col. 7 - trench normal (in subduction direction, ie, towards overriding plate) azimuth angle (clockwise starting at North, ie, 0 to 360 degrees) at current point
  • Col. 8 - subducting plate ID
  • Col. 9 - trench plate ID

The optional 'output_*' parameters can be used to append extra data to the tuple of each sampled trench point. The order of any extra data is the same order in which the parameters are listed in this function.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
ValueError
If use_ptt is True and convergence_threshold_in_cm_per_yr is not None.

Notes

If use_ptt is False then each trench is sampled at exactly uniform intervals along its length such that the sampled points have a uniform spacing (along each trench polyline) that is equal to tessellation_threshold_radians. If use_ptt is True then each trench is sampled at approximately uniform intervals along its length such that the sampled points have a uniform spacing (along each trench polyline) that is less than or equal to tessellation_threshold_radians.

The trench normal (at each sampled trench point) always points towards the overriding plate. The obliquity angles are in the range (-180, 180). The range (0, 180) goes clockwise (when viewed from above the Earth) from the trench normal direction to the velocity vector. The range (0, -180) goes counter-clockwise. You can change the range (-180, 180) to the range (0, 360) by adding 360 to negative angles. The trench normal is perpendicular to the trench and pointing toward the overriding plate.

Note that the convergence velocity magnitude is negative if the plates are diverging (if convergence obliquity angle is greater than 90 or less than -90). And note that the trench absolute velocity magnitude is negative if the trench (subduction zone) is moving towards the overriding plate (if trench absolute obliquity angle is less than 90 and greater than -90) - note that this ignores the kinematics of the subducting plate. Similiarly for the subducting plate absolute velocity magnitude (if keyword argument output_subducting_absolute_velocity is True).

Examples

To sample points along subduction zones at 50Ma:

subduction_data = plate_reconstruction.tessellate_subduction_zones(50)

To sample points along subduction zones at 50Ma, but only where there's convergence:

subduction_data = plate_reconstruction.tessellate_subduction_zones(50,
        convergence_threshold_in_cm_per_yr=0.0)
def topological_snapshot(self, time, *, anchor_plate_id=None, include_topological_slab_boundaries=True)

Create a snapshot of resolved topologies at the specified reconstruction time.

This returns a pygplates.TopologicalSnapshot from which you can extract resolved topologies, calculate velocities at point locations, calculate plate boundary statistics, etc.

Parameters

time : float, int or pygplates.GeoTimeInstant
The geological time at which to create the topological snapshot.
anchor_plate_id : int, optional
The anchored plate id to use when resolving topologies. If not specified then uses the current anchor plate (anchor_plate_id attribute).
include_topological_slab_boundaries : bool, default=True
Include topological boundary features of type gpml:TopologicalSlabBoundary. By default all features passed into constructor (__init__) are included in the snapshot. However setting this to False is useful when you're only interested in plate boundaries.

Returns

topological_snapshot : pygplates.TopologicalSnapshot
The topological snapshot at the specified time (and anchor plate).

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
def total_continental_arc_length(self, time, continental_grid, trench_arc_distance, ignore_warnings=True, *, use_ptt=False, include_network_boundaries=False, convergence_threshold_in_cm_per_yr=None)

Calculates the total length of all global continental arcs (km) at the specified geological time (Ma).

Resolves topologies at time and tessellates all resolved subducting features into points (see tessellate_subduction_zones). The resolved points then are projected out by the trench_arc_distance (towards overriding plate) and their new locations are linearly interpolated onto the supplied continental_grid. If the projected trench points lie in the grid, they are considered continental arc points, and their arc segment lengths are appended to the total continental arc length for the specified time. The total length is scaled to kilometres using the geocentric radius (at each sampled point).

Parameters

time : int
The geological time at which to calculate total continental arc lengths.
continental_grid : Raster, array_like, or str
The continental grid used to identify continental arc points. Must be convertible to Raster. For an array, a global extent is assumed [-180,180,-90,90]. For a filename, the extent is obtained from the file.
trench_arc_distance : float
The trench-to-arc distance (in kilometres) to project sampled trench points out by in the direction of the overriding plate.
ignore_warnings : bool, default=True
Choose whether to ignore warning messages from Plate Tectonic Tools' subduction_convergence workflow (if use_ptt is True) that alerts the user of subduction sub-segments that are ignored due to unidentified polarities and/or subducting plates.
use_ptt : bool, default=False
If set to True then uses Plate Tectonic Tools' subduction_convergence workflow to sample subducting features and their subduction polarities. If set to False then uses plate convergence instead. Plate convergence is the more general approach that works along all plate boundaries (not just subduction zones).
include_network_boundaries : bool, default=False
Whether to sample subducting features along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option. Since subduction zones occur along plate boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
convergence_threshold_in_cm_per_yr : float, optional
Only sample points with an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr). For example, setting this to 0.0 would remove all diverging sample points (leaving only converging points). This value can be negative which means a small amount of divergence is allowed. If None then all (converging and diverging) points are sampled. This is the default. Note that this parameter can only be specified if use_ptt is False.

Returns

total_continental_arc_length_kms : float
The continental arc length (in km) at the specified time.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
ValueError
If use_ptt is True and convergence_threshold_in_cm_per_yr is not None.

Examples

To calculate the total length of continental arcs at 50Ma:

total_continental_arc_length_kms = plate_reconstruction.total_continental_arc_length(50)

To calculate the total length of subduction zones adjacent to continents at 50Ma, but only where there's actual convergence:

total_continental_arc_length_kms = plate_reconstruction.total_continental_arc_length(50,
        convergence_threshold_in_cm_per_yr=0.0)
def total_ridge_length(self, time, use_ptt=False, ignore_warnings=False, *, spreading_feature_types=[<pygplates.pygplates.FeatureType object>], transform_segment_deviation_in_radians=1.2217304763960306, include_network_boundaries=False, divergence_threshold_in_cm_per_yr=None)

Calculates the total length of all resolved spreading features (e.g. mid-ocean ridges) at the specified geological time (Ma).

Resolves topologies at time and tessellates all resolved spreading features into points (see tessellate_mid_ocean_ridges).

The transform segments of spreading features are ignored (unless transform_segment_deviation_in_radians is None).

Total length is calculated by sampling points along the resolved spreading features (e.g. mid-ocean ridges) and accumulating their lengths (see tessellate_mid_ocean_ridges). Scales lengths to kilometres using the geocentric radius (at each sampled point).

Parameters

time : int
The geological time at which to calculate total mid-ocean ridge lengths.
use_ptt : bool, default=False
If set to True then uses Plate Tectonic Tools' ridge_spreading_rate workflow to calculate total ridge length (which uses the spreading stage rotation of the left/right plate IDs to calculate spreading directions - see transform_segment_deviation_in_radians). If set to False then uses plate divergence to calculate total ridge length (which samples velocities of the two adjacent boundary plates at each sampled point to calculate spreading directions - see transform_segment_deviation_in_radians). Plate divergence is the more general approach that works along all plate boundaries (not just mid-ocean ridges).
ignore_warnings : bool, default=False
Choose to ignore warnings from Plate Tectonic Tools' ridge_spreading_rate workflow (if use_ptt is True).
spreading_feature_types : <pygplates.FeatureType> or sequence of <pygplates.FeatureType>, default=pygplates.FeatureType.gpml_mid_ocean_ridge
Only count lengths along plate boundaries of the specified feature types. Default is to only sample mid-ocean ridges. You can explicitly specify None to sample all plate boundaries, but note that if use_ptt is True then only plate boundaries that are spreading feature types are sampled (since Plate Tectonic Tools only works on spreading plate boundaries, eg, mid-ocean ridges).
transform_segment_deviation_in_radians : float, default=<implementation-defined>
How much a spreading direction can deviate from the segment normal before it's considered a transform segment (in radians). The default value has been empirically determined to give the best results for typical models. If None then the full feature geometry is used (ie, it is not split into ridge and transform segments with the transform segments getting ignored).
include_network_boundaries : bool, default=False
Whether to count lengths along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option. Since spreading features occur along plate boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as spreading.
divergence_threshold_in_cm_per_yr : float, optional
Only count lengths associated with sample points that have an orthogonal (ie, in the spreading geometry's normal direction) diverging velocity above this value (in cm/yr). For example, setting this to 0.0 would remove all converging sample points (leaving only diverging points). This value can be negative which means a small amount of convergence is allowed. If None then all (diverging and converging) sample points are counted. This is the default since spreading_feature_types is instead used (by default) to include only plate boundaries that are typically diverging (eg, mid-ocean ridges). However, setting spreading_feature_types to None (and transform_segment_deviation_in_radians to None) and explicitly specifying this parameter (eg, to 0.0) can be used to count points along all plate boundaries that are diverging. However, this parameter can only be specified if use_ptt is False.

Returns

total_ridge_length_kms : float
The total length of global mid-ocean ridges (in kilometres) at the specified time.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
ValueError
If use_ptt is True and divergence_threshold_in_cm_per_yr is not None.

Examples

To calculate the total length of mid-ocean ridges at 50Ma, but ignoring the transform segments (of the ridges):

total_ridge_length_kms = plate_reconstruction.total_ridge_length(50)

To do the same, but instead of ignoring transform segments include both ridge and transform segments, but only where orthogonal diverging velocities are greater than 0.2 cm/yr:

total_ridge_length_kms = plate_reconstruction.total_ridge_length(50,
        transform_segment_deviation_in_radians=None,
        divergence_threshold_in_cm_per_yr=0.2)
def total_subduction_zone_length(self, time, use_ptt=False, ignore_warnings=False, *, include_network_boundaries=False, convergence_threshold_in_cm_per_yr=None)

Calculates the total length of all subduction zones (km) at the specified geological time (Ma).

Resolves topologies at time and tessellates all resolved subducting features into points (see tessellate_subduction_zones).

Total length is calculated by sampling points along the resolved subducting features (e.g. subduction zones) and accumulating their lengths (see tessellate_subduction_zones). Scales lengths to kilometres using the geocentric radius (at each sampled point).

Parameters

time : int
The geological time at which to calculate total subduction zone lengths.
use_ptt : bool, default=False
If set to True then uses Plate Tectonic Tools' subduction_convergence workflow to calculate total subduction zone length. If set to False then uses plate convergence instead. Plate convergence is the more general approach that works along all plate boundaries (not just subduction zones).
ignore_warnings : bool, default=False
Choose to ignore warnings from Plate Tectonic Tools' subduction_convergence workflow (if use_ptt is True).
include_network_boundaries : bool, default=False
Whether to count lengths along network boundaries that are not also plate boundaries (defaults to False). If a deforming network shares a boundary with a plate then it'll get included regardless of this option. Since subduction zones occur along plate boundaries this would only be an issue if an intra-plate network boundary was incorrectly labelled as subducting.
convergence_threshold_in_cm_per_yr : float, optional
Only count lengths associated with sample points that have an orthogonal (ie, in the subducting geometry's normal direction) converging velocity above this value (in cm/yr). For example, setting this to 0.0 would remove all diverging sample points (leaving only converging points). This value can be negative which means a small amount of divergence is allowed. If None then all (converging and diverging) sample points are counted. This is the default. Note that this parameter can only be specified if use_ptt is False.

Returns

total_subduction_zone_length_kms : float
The total subduction zone length (in km) at the specified time.

Raises

ValueError
If topology features have not been set in this PlateReconstruction.
ValueError
If use_ptt is True and convergence_threshold_in_cm_per_yr is not None.

Examples

To calculate the total length of subduction zones at 50Ma:

total_subduction_zone_length_kms = plate_reconstruction.total_subduction_zone_length(50)

To calculate the total length of subduction zones at 50Ma, but only where there's actual convergence:

total_subduction_zone_length_kms = plate_reconstruction.total_subduction_zone_length(50,
        convergence_threshold_in_cm_per_yr=0.0)
class Points (plate_reconstruction, lons, lats, time=0, plate_id=None, age=inf, *, anchor_plate_id=None, remove_unreconstructable_points=False)

Points contains methods to reconstruct and work with with geological point data. For example, the locations and plate velocities of point data can be calculated at a specific geological time. The Points object requires the PlateReconstruction object to work because it holds the rotation_model needed to quantify point rotations through time and static_polygons needed to partition points into plates.

Attributes

plate_reconstruction : PlateReconstruction
Allows for the accessibility of PlateReconstruction object attributes: rotation_model, topology_featues and static_polygons for use in the Points object if called using “self.plate_reconstruction.X”, where X is the attribute.
lons : float 1D array
A 1D array containing the longitudes of point data. These are the longitudes of the initial points at the initial time.
lats : float 1D array
A 1D array containing the latitudes of point data. These are the latitudes of the initial points at the initial time.
plate_id : int 1D array
A 1D array containing the plate IDs of the points. The length matches that of lons and lats.
age : float 1D array
A 1D array containing the ages (time of appearance) of the points. The length matches that of lons and lats. For points on oceanic crust this is when they were created at a mid-ocean ridge. Any points existing for all time will have a value of numpy.inf (equivalent to float('inf')).
size : int
Number of points. This is the size of lons, lats, plate_id and age.
time : float
The initial time (Ma) of the points. The initial lons and lats are the locations of the points at this time.
anchor_plate_id : int
Anchor plate that the initial lons and lats are relative to, at the initial time. This is also used as the default anchor plate when reconstructing the points. It does not change, even if the anchor plate of plate_reconstruction subsequently changes.

Parameters

plate_reconstruction : PlateReconstruction
Allows for the accessibility of PlateReconstruction object attributes: rotation_model, topology_featues and static_polygons for use in the Points object if called using “self.plate_reconstruction.X”, where X is the attribute.
lons : float or 1D array
These are the longitudes of the initial points at the initial time. A single float, or a 1D array, containing the longitudes of point data. If a single float then lats must also be a single float. If a 1D array then lats must also be a 1D array.
lats : float or 1D array
These are the latitudes of the initial points at the initial time. A single float, or a 1D array, containing the latitudes of point data. If a single float then lons must also be a single float. If a 1D array then lons must also be a 1D array.
time : float, default=0
The initial time (Ma) of the points. Note that lons and lats are the initial locations of the points at this time. By default, it is set to the present day (0 Ma).
plate_id : int or 1D array or None, default=None
Plate ID(s) of a particular tectonic plate on which point data lies, if known. If a single integer then all points will have the same plate ID. If a 1D array then length must match the number of points. If None then plate IDs are determined using the static_polygons of plate_reconstruction (see Notes). By default, the plate IDs are determined using the static polygons.
age : float or 1D array or None, default=numpy.inf
Age(s) at which each point appears, if known. If a single float then all points will have the same age. If a 1D array then length must match the number of points. If None then ages are determined using the static_polygons of plate_reconstruction (see Notes). For points on oceanic crust this is when they were created at a mid-ocean ridge. By default, all points exist for all time (ie, time of appearance is infinity). This default is for backward compatibility, but you'll typically only want this if all your points are on continental crust (not oceanic).
anchor_plate_id : int, optional
Anchor plate that the specified lons and lats are relative to. Defaults to the current anchor plate ID of plate_reconstruction (its anchor_plate_id attribute).
remove_unreconstructable_points : bool or list, default=False
Whether to remove points (in lons and lats) that cannot be reconstructed. By default, any unreconstructable points are retained. A point cannot be reconstructed if it cannot be assigned a plate ID, or cannot be assigned an age, because it did not intersect any reconstructed static polygons (note that this can only happen when plate_id and/or age is None). Also, a point cannot be reconstructed if point ages were explicitly provided (ie, age was not None) and a point's age was less than (younger than) time, meaning it did not exist as far back as time. Additionally, if this variable is a regular Python list then the indices (into the supplied lons and lats arguments) of any removed points (ie, that are unreconstructable) are appended to that list.

Notes

If time is non-zero (ie, not present day) then lons and lats are assumed to be the reconstructed point locations at time. And the reconstructed positions are assumed to be relative to the anchor plate (which is plate_reconstruction.anchor_plate_id if anchor_plate_id is None).

If plate_id and/or age is None then the plate ID and/or age of each point is determined by reconstructing the static polygons of plate_reconstruction to time and reconstructing relative to the anchor plate (regardless of whether time is present day or not). And then, for each point, assigning the plate ID and/or time-of-appearance (begin time) of the static polygon containing the point.

A point is considered unreconstructable if it does not exist at time. This can happen if its age was explicitly provided (ie, age is not None) but is younger than time. It can also happen if the point is automatically assigned a plate ID (ie, plate_id is None) or an age (ie, age is None) but does not intersect any reconstructed static polygons (at time). In either of these cases it is marked as unreconstructable and will not be available for any method outputing a reconstruction, such as reconstruct, or any method depending on a reconstruction, such as plate_velocity. However, all the initial locations and their associated plate IDs and ages will still be accessible as attributes, regardless of whether all the points are reconstructable or not. That is, unless remove_unreconstructable_points is True (or a list), in which case only the reconstructable points are retained.

Expand source code
class Points(object):
    """`Points` contains methods to reconstruct and work with with geological point data. For example, the
    locations and plate velocities of point data can be calculated at a specific geological `time`. The `Points`
    object requires the `PlateReconstruction` object to work because it holds the `rotation_model` needed to
    quantify point rotations through time and `static_polygons` needed to partition points into plates.

    Attributes
    ----------
    plate_reconstruction : PlateReconstruction
        Allows for the accessibility of `PlateReconstruction` object attributes: `rotation_model`, `topology_featues`
        and `static_polygons` for use in the `Points` object if called using “self.plate_reconstruction.X”,
        where X is the attribute.

    lons : float 1D array
        A 1D array containing the longitudes of point data.
        These are the longitudes of the initial points at the initial `time`.

    lats : float 1D array
        A 1D array containing the latitudes of point data.
        These are the latitudes of the initial points at the initial `time`.

    plate_id : int 1D array
        A 1D array containing the plate IDs of the points.
        The length matches that of `lons` and `lats`.

    age : float 1D array
        A 1D array containing the ages (time of appearance) of the points.
        The length matches that of `lons` and `lats`.
        For points on oceanic crust this is when they were created at a mid-ocean ridge.
        Any points existing for all time will have a value of `numpy.inf` (equivalent to `float('inf')`).

    size : int
        Number of points.
        This is the size of `lons`, `lats`, `plate_id` and `age`.

    time : float
        The initial time (Ma) of the points.
        The initial `lons` and `lats` are the locations of the points at this time.

    anchor_plate_id : int
        Anchor plate that the initial `lons` and `lats` are relative to, at the initial `time`.
        This is also used as the default anchor plate when reconstructing the points.
        It does not change, even if the anchor plate of `plate_reconstruction` subsequently changes.
    """

    def __init__(
        self,
        plate_reconstruction,
        lons,
        lats,
        time=0,
        plate_id=None,
        age=np.inf,
        *,
        anchor_plate_id=None,
        remove_unreconstructable_points=False,
    ):
        """
        Parameters
        ----------
        plate_reconstruction : PlateReconstruction
            Allows for the accessibility of `PlateReconstruction` object attributes: `rotation_model`, `topology_featues`
            and `static_polygons` for use in the `Points` object if called using “self.plate_reconstruction.X”,
            where X is the attribute.

        lons : float or 1D array
            These are the longitudes of the initial points at the initial `time`.
            A single float, or a 1D array, containing the longitudes of point data.
            If a single float then `lats` must also be a single float. If a 1D array then `lats` must also be a 1D array.

        lats : float or 1D array
            These are the latitudes of the initial points at the initial `time`.
            A single float, or a 1D array, containing the latitudes of point data.
            If a single float then `lons` must also be a single float. If a 1D array then `lons` must also be a 1D array.

        time : float, default=0
            The initial time (Ma) of the points.
            Note that `lons` and `lats` are the initial locations of the points at this time.
            By default, it is set to the present day (0 Ma).

        plate_id : int or 1D array or None, default=None
            Plate ID(s) of a particular tectonic plate on which point data lies, if known.
            If a single integer then all points will have the same plate ID. If a 1D array then length must match the number of points.
            If `None` then plate IDs are determined using the `static_polygons` of `plate_reconstruction` (see Notes).
            By default, the plate IDs are determined using the static polygons.

        age : float or 1D array or None, default=numpy.inf
            Age(s) at which each point appears, if known.
            If a single float then all points will have the same age. If a 1D array then length must match the number of points.
            If `None` then ages are determined using the `static_polygons` of `plate_reconstruction` (see Notes).
            For points on oceanic crust this is when they were created at a mid-ocean ridge.
            By default, all points exist for all time (ie, time of appearance is infinity). This default is for backward
            compatibility, but you'll typically only want this if all your points are on *continental* crust (not *oceanic*).

        anchor_plate_id : int, optional
            Anchor plate that the specified `lons` and `lats` are relative to.
            Defaults to the current anchor plate ID of `plate_reconstruction` (its `anchor_plate_id` attribute).

        remove_unreconstructable_points : bool or list, default=False
            Whether to remove points (in `lons` and `lats`) that cannot be reconstructed.
            By default, any unreconstructable points are retained.
            A point cannot be reconstructed if it cannot be assigned a plate ID, or cannot be assigned an age, because it did not
            intersect any reconstructed static polygons (note that this can only happen when `plate_id` and/or `age` is None).
            Also, a point cannot be reconstructed if point ages were *explicitly* provided (ie, `age` was *not* None) and
            a point's age was less than (younger than) `time`, meaning it did not exist as far back as `time`.
            Additionally, if this variable is a regular Python `list` then the indices (into the supplied `lons` and `lats` arguments)
            of any removed points (ie, that are unreconstructable) are appended to that list.

        Notes
        -----
        If `time` is non-zero (ie, not present day) then `lons` and `lats` are assumed to be the *reconstructed* point locations at `time`.
        And the reconstructed positions are assumed to be relative to the anchor plate
        (which is `plate_reconstruction.anchor_plate_id` if `anchor_plate_id` is None).

        If `plate_id` and/or `age` is `None` then the plate ID and/or age of each point is determined by reconstructing the static polygons
        of `plate_reconstruction` to `time` and reconstructing relative to the anchor plate (regardless of whether `time` is present day or not).
        And then, for each point, assigning the plate ID and/or time-of-appearance (begin time) of the static polygon containing the point.

        A point is considered unreconstructable if it does not exist at `time`. This can happen if its age was explicitly provided (ie, `age` is *not* None)
        but is younger than `time`. It can also happen if the point is automatically assigned a plate ID (ie, `plate_id` is None) or an age (ie, `age` is None)
        but does not intersect any reconstructed static polygons (at `time`). In either of these cases it is marked as unreconstructable and will not be available
        for any method outputing a reconstruction, such as `reconstruct`, or any method depending on a reconstruction, such as `plate_velocity`.
        However, all the initial locations and their associated plate IDs and ages will still be accessible as attributes, regardless of whether all the points
        are reconstructable or not. That is, unless `remove_unreconstructable_points` is True (or a `list`), in which case only the reconstructable points are retained.
        """
        # If anchor plate is None then use default anchor plate of 'plate_reconstruction'.
        if anchor_plate_id is None:
            anchor_plate_id = plate_reconstruction.anchor_plate_id
        else:
            anchor_plate_id = self._check_anchor_plate_id(anchor_plate_id)

        # The caller can specify a 'list' for the 'remove_unreconstructable_points' argument if they want us to
        # return the indices of any points that are NOT reconstructable.
        #
        # Otherwise 'remove_unreconstructable_points' must be true or false.
        if isinstance(remove_unreconstructable_points, list):
            unreconstructable_point_indices_list = remove_unreconstructable_points
            remove_unreconstructable_points = True
        else:
            unreconstructable_point_indices_list = None

        # Most common case first: both are sequences.
        if not np.isscalar(lons) and not np.isscalar(lats):
            # Make sure numpy arrays (if not already).
            lons = np.asarray(lons)
            lats = np.asarray(lats)
            if len(lons) != len(lats):
                raise ValueError(
                    "'lons' and 'lats' must be of equal length ({} != {})".format(
                        len(lons), len(lats)
                    )
                )
        elif np.isscalar(lons) and np.isscalar(lats):
            # Both are scalars. Convert to arrays with one element.
            lons = np.atleast_1d(lons)
            lats = np.atleast_1d(lats)
        else:
            raise ValueError(
                "Both 'lats' and 'lons' must both be a sequence or both a scalar"
            )

        num_points = len(lons)

        # If caller provided plate IDs.
        if plate_id is not None:
            # If plate ID is a scalar then all points have the same plate ID.
            if np.isscalar(plate_id):
                point_plate_ids = np.full(num_points, plate_id)
            else:
                point_plate_ids = np.asarray(plate_id)
                if len(point_plate_ids) != num_points:
                    raise ValueError(
                        "'plate_id' must be same length as 'lons' and 'lats' ({} != {})".format(
                            len(point_plate_ids), num_points
                        )
                    )

        # If caller provided begin ages.
        if age is not None:
            # If age is a scalar then all points have the same age.
            if np.isscalar(age):
                point_ages = np.full(num_points, age)
            else:
                point_ages = np.asarray(age)
                if len(point_ages) != num_points:
                    raise ValueError(
                        "'age' must be same length as 'lons' and 'lats' ({} != {})".format(
                            len(point_ages), num_points
                        )
                    )

        # Create pygplates points.
        points = [pygplates.PointOnSphere(lat, lon) for lon, lat in zip(lons, lats)]

        # If plate IDs and/or ages are automatically assigned using reconstructed static polygons then
        # some points might be outside all reconstructed static polygons, and hence not reconstructable.
        #
        # However, if the user provided both plate IDs and ages then all points will be reconstructable.
        points_are_reconstructable = np.full(num_points, True)

        # If caller did not provide plate IDs or begin ages then
        # we need to determine them using the static polygons.
        if plate_id is None or age is None:

            if plate_id is None:
                point_plate_ids = np.empty(num_points, dtype=int)
            if age is None:
                point_ages = np.empty(num_points)

            # Assign a plate ID to each point based on which reconstructed static polygon it's inside.
            static_polygons_snapshot = plate_reconstruction.static_polygons_snapshot(
                time,
                anchor_plate_id=anchor_plate_id,
            )
            reconstructed_static_polygons_containing_points = (
                static_polygons_snapshot.get_point_locations(points)
            )
            for point_index in range(num_points):
                reconstructed_static_polygon = (
                    reconstructed_static_polygons_containing_points[point_index]
                )

                # If current point is inside a reconstructed static polygon then assign its plate ID to the point,
                # otherwise assign the anchor plate to the point.
                if reconstructed_static_polygon is not None:
                    reconstructed_static_polygon_feature = (
                        reconstructed_static_polygon.get_feature()
                    )

                    if plate_id is None:
                        point_plate_ids[point_index] = (
                            reconstructed_static_polygon_feature.get_reconstruction_plate_id()
                        )
                    if age is None:
                        point_ages[point_index], _ = (
                            reconstructed_static_polygon_feature.get_valid_time()
                        )

                else:  # current point did NOT intersect a reconstructed static polygon ...

                    # We're trying to assign a plate ID or assign an age (or both), neither of which we can assign.
                    # That essentially makes the current point unreconstructable.
                    #
                    # Mark the current point as unreconstructable.
                    points_are_reconstructable[point_index] = False

                    if plate_id is None:
                        # Assign the anchor plate ID to indicate we could NOT assign a proper plate ID.
                        point_plate_ids[point_index] = anchor_plate_id
                    if age is None:
                        # Assign the distant future (not distant past) to indicate we could NOT assign a proper age.
                        point_ages[point_index] = -np.inf  # distant future

        # If point ages were explicitly provided by the caller then we need to check if points existed at 'time'.
        if age is not None:
            # Any point with an age younger than 'time' did not exist at 'time' and hence is not reconstructable.
            points_are_reconstructable[point_ages < time] = False

        # If requested, remove any unreconstructable points.
        if remove_unreconstructable_points and not points_are_reconstructable.all():
            if unreconstructable_point_indices_list is not None:
                # Caller requested the indices of points that are NOT reconstructable.
                unreconstructable_point_indices_list.extend(
                    np.where(points_are_reconstructable == False)[0]
                )
            lons = lons[points_are_reconstructable]
            lats = lats[points_are_reconstructable]
            point_plate_ids = point_plate_ids[points_are_reconstructable]
            point_ages = point_ages[points_are_reconstructable]
            points = [
                points[point_index]
                for point_index in range(num_points)
                if points_are_reconstructable[point_index]
            ]
            num_points = len(points)
            # All points are now reconstructable.
            points_are_reconstructable = np.full(num_points, True)

        # Create a feature for each point.
        #
        # Each feature has a point, a plate ID and a valid time range.
        #
        # Note: The valid time range always includes present day.
        point_features = []
        for point_index in range(num_points):
            point_feature = pygplates.Feature()
            # Set the geometry.
            point_feature.set_geometry(points[point_index])
            # Set the plate ID.
            point_feature.set_reconstruction_plate_id(point_plate_ids[point_index])
            # Set the begin/end time.
            point_feature.set_valid_time(
                point_ages[point_index],  # begin (age)
                -np.inf,  # end (distant future; could also be zero for present day)
            )
            point_features.append(point_feature)

        # If the points represent a snapshot at a *past* geological time then we need to reverse reconstruct them
        # such that their features contain present-day points.
        if time != 0:
            pygplates.reverse_reconstruct(
                point_features,
                plate_reconstruction.rotation_model,
                time,
                anchor_plate_id=anchor_plate_id,
            )

        # Map each unique plate ID to indices of points assigned that plate ID.
        unique_plate_id_groups = {}
        unique_plate_ids = np.unique(point_plate_ids)
        for unique_plate_id in unique_plate_ids:
            # Determine which points have the current unique plate ID.
            unique_plate_id_point_indices = np.where(
                point_plate_ids == unique_plate_id
            )[
                0
            ]  # convert 1-tuple of 1D array to 1D array
            unique_plate_id_groups[unique_plate_id] = unique_plate_id_point_indices

        #
        # Assign data members.
        #

        # Note: These are documented attributes (in class docstring).
        #       And they cannot be changed later (they are properties with no setter).
        #       The other attributes probably should be readonly too (but at least they're not documented).
        self._plate_reconstruction = plate_reconstruction
        self._lons = lons
        self._lats = lats
        self._time = time
        self._plate_id = point_plate_ids
        self._age = point_ages
        self._anchor_plate_id = anchor_plate_id

        # get Cartesian coordinates
        self.x, self.y, self.z = _tools.lonlat2xyz(lons, lats, degrees=False)
        # scale by average radius of the Earth
        self.x *= _tools.EARTH_RADIUS
        self.y *= _tools.EARTH_RADIUS
        self.z *= _tools.EARTH_RADIUS
        # store concatenated arrays
        self.lonlat = np.c_[lons, lats]
        self.xyz = np.c_[self.x, self.y, self.z]

        self.points = points

        self.attributes = dict()

        self._reconstructable = points_are_reconstructable
        self._unique_plate_id_groups = unique_plate_id_groups

        self.features = point_features
        self.feature_collection = pygplates.FeatureCollection(point_features)

    def __getstate__(self):
        state = self.__dict__.copy()

        # Remove the unpicklable entries.
        #
        # This includes pygplates reconstructed feature geometries and resolved topological geometries.
        # Note: PyGPlates features and features collections (and rotation models) can be pickled though.
        #

        return state

    def __setstate__(self, state):
        self.__dict__.update(state)

        # Restore the unpicklable entries.
        #
        # This includes pygplates reconstructed feature geometries and resolved topological geometries.
        # Note: PyGPlates features and features collections (and rotation models) can be pickled though.
        #

    @property
    def plate_reconstruction(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._plate_reconstruction

    @property
    def lons(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._lons

    @property
    def lats(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._lats

    @property
    def plate_id(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._plate_id

    @property
    def age(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._age

    @property
    def size(self):
        # Note: This is documented as an attribute in the class docstring.
        return len(self.points)

    @property
    def time(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._time

    @property
    def anchor_plate_id(self):
        # Note: This is documented as an attribute in the class docstring.
        return self._anchor_plate_id

    @staticmethod
    def _check_anchor_plate_id(id):
        id = int(id)
        if id < 0:
            raise ValueError("Invalid anchor plate ID: {}".format(id))
        return id

    def copy(self):
        """Returns a copy of the Points object

        Returns
        -------
        Points
            A copy of the current Points object
        """
        gpts = Points(
            self.plate_reconstruction,
            self.lons.copy(),
            self.lats.copy(),
            self.time,
            self.plate_id.copy(),
            self.age.copy(),
            anchor_plate_id=self.anchor_plate_id,
        )
        gpts.add_attributes(**self.attributes.copy())

    def add_attributes(self, **kwargs):
        """Adds the value of a feature attribute associated with a key.

        Example
        -------

            # Define latitudes and longitudes to set up a Points object
            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add the attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            print(gpts.attributes)

        The output would be:

            {'a': [10, 2, 2], 'b': [2, 3, 3], 'c': [30, 0, 0]}

        Parameters
        ----------
        **kwargs : sequence of key=item/s
            A single key=value pair, or a sequence of key=value pairs denoting the name and
            value of an attribute.


        Notes
        -----
        * An **assertion** is raised if the number of points in the Points object is not equal
        to the number of values associated with an attribute key. For example, consider an instance
        of the Points object with 3 points. If the points are ascribed an attribute `temperature`,
        there must be one `temperature` value per point, i.e. `temperature = [20, 15, 17.5]`.

        """
        keys = kwargs.keys()

        for key in kwargs:
            attribute = kwargs[key]

            # make sure attribute is the same size as self.lons
            if type(attribute) is int or type(attribute) is float:
                array = np.full(self.lons.size, attribute)
                attribute = array
            elif isinstance(attribute, np.ndarray):
                if attribute.size == 1:
                    array = np.full(self.lons.size, attribute, dtype=attribute.dtype)
                    attribute = array

            assert (
                len(attribute) == self.lons.size
            ), "Size mismatch, ensure attributes have the same number of entries as Points"
            self.attributes[key] = attribute

        if any(kwargs):
            # add these to the FeatureCollection
            for f, feature in enumerate(self.feature_collection):
                for key in keys:
                    # extract value for each row in attribute
                    val = self.attributes[key][f]

                    # set this attribute on the feature
                    feature.set_shapefile_attribute(key, val)

    def get_geopandas_dataframe(self):
        """Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
        pandas.DataFrame that has a column with geometry
        Any existing point attributes are kept.

        Returns
        -------
        GeoDataFrame : instance of `geopandas.GeoDataFrame`
            A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
            and an additional column containing a shapely `geometry` attribute.

        Example
        -------

            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add sample attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            gpts.get_geopandas_dataframe()

        ...has the output:

                a  b   c                     geometry
            0  10  2  30  POINT (140.00000 -30.00000)
            1   2  3   0  POINT (150.00000 -40.00000)
            2   2  3   0  POINT (160.00000 -50.00000)


        """
        import geopandas as gpd
        from shapely import geometry

        # create shapely points
        points = []
        for lon, lat in zip(self.lons, self.lats):
            points.append(geometry.Point(lon, lat))

        attributes = self.attributes.copy()
        attributes["geometry"] = points

        return gpd.GeoDataFrame(attributes, geometry="geometry")

    def get_geodataframe(self):
        """Returns the output of `Points.get_geopandas_dataframe()`.

        Adds a shapely point `geometry` attribute to each point in the `gplately.Points` object.
        pandas.DataFrame that has a column with geometry
        Any existing point attributes are kept.

        Returns
        -------
        GeoDataFrame : instance of `geopandas.GeoDataFrame`
            A pandas.DataFrame with rows equal to the number of points in the `gplately.Points` object,
            and an additional column containing a shapely `geometry` attribute.

        Example
        -------

            pt_lons = np.array([140., 150., 160.])
            pt_lats = np.array([-30., -40., -50.])

            gpts = gplately.Points(model, pt_lons, pt_lats)

            # Add sample attributes a, b and c to the points in the Points object
            gpts.add_attributes(
                a=[10,2,2],
                b=[2,3,3],
                c=[30,0,0],
            )

            gpts.get_geopandas_dataframe()

        ...has the output:

                a  b   c                     geometry
            0  10  2  30  POINT (140.00000 -30.00000)
            1   2  3   0  POINT (150.00000 -40.00000)
            2   2  3   0  POINT (160.00000 -50.00000)


        """
        return self.get_geopandas_dataframe()

    def reconstruct(
        self, time, anchor_plate_id=None, return_array=False, return_point_indices=False
    ):
        """Reconstructs points supplied to this `Points` object from the supplied initial time (`self.time`) to the specified time (`time`).

        Only those points that are reconstructable (see `Points`) and that have ages greater than or equal to `time` (ie, at points that exist at `time`) are reconstructed.

        Parameters
        ----------
        time : float
            The specific geological time (Ma) to reconstruct features to.

        anchor_plate_id : int, optional
            Reconstruct features with respect to a certain anchor plate.
            By default, reconstructions are made with respect to `self.anchor_plate_id`
            (which is the anchor plate that the initial points at the initial time are relative to).

        return_array : bool, default=False
            Return a 2-tuple of `numpy.ndarray`, rather than a `Points` object.

        return_point_indices : bool, default=False
            Return the indices of the points that are reconstructed.
            Those points with an age less than `time` have not yet appeared at `time`, and therefore are not reconstructed.
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.

        Returns
        -------
        reconstructed_points : Points
            Only provided if `return_array` is False.
            The reconstructed points in a `Points` object.
        rlons, rlats : ndarray
            Only provided if `return_array` is True.
            The longitude and latitude coordinate arrays of the reconstructed points.
        point_indices : ndarray
            Only provided if `return_point_indices` is True.
            The indices of the returned points (that are reconstructed).
            This array is the same size as `rlons` and `rlats` (or size of `reconstructed_points`).
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.
        """
        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        # Start with an empty array.
        lat_lon_points = np.empty((self.size, 2))

        # Determine which points are valid.
        #
        # These are those points that are reconstructable and have appeared before (or at) 'time'
        # (ie, have a time-of-appearance that's greater than or equal to 'time').
        valid_mask = self._reconstructable & (self.age >= time)

        # Iterate over groups of points with the same plate ID.
        for (
            plate_id,
            point_indices_with_plate_id,
        ) in self._unique_plate_id_groups.items():

            # Determine which points (indices) with the current unique plate ID are valid.
            point_indices_with_plate_id = point_indices_with_plate_id[
                valid_mask[point_indices_with_plate_id]
            ]
            # If none of the points (with the current unique plate ID) are valid then skip to next unique plate ID.
            if point_indices_with_plate_id.size == 0:
                continue

            # Get the reconstructed points with the current unique plate ID that have appeared before (or at) 'time'.
            reconstructed_points_with_plate_id = pygplates.MultiPointOnSphere(
                self.points[point_index] for point_index in point_indices_with_plate_id
            )

            # First reconstruct the internal points from the initial time ('self.time') to present day using
            # our internal anchor plate ID (the same anchor plate used in '__init__').
            # Then reconstruct from present day to 'time' using the *requested* anchor plate ID.
            #
            # Note 'self.points' (and hence 'reconstructed_points_with_plate_id') are the locations at 'self.time'
            #      (just like 'self.lons' and 'self.lats').
            reconstruct_rotation = (
                self.plate_reconstruction.rotation_model.get_rotation(
                    to_time=time,
                    moving_plate_id=plate_id,
                    from_time=0,
                    anchor_plate_id=anchor_plate_id,
                )
                * self.plate_reconstruction.rotation_model.get_rotation(
                    to_time=0,
                    moving_plate_id=plate_id,
                    from_time=self.time,
                    anchor_plate_id=self.anchor_plate_id,
                )
            )
            reconstructed_points_with_plate_id = (
                reconstruct_rotation * reconstructed_points_with_plate_id
            )

            # Write the reconstructed points.
            lat_lon_points[point_indices_with_plate_id] = [
                rpoint.to_lat_lon() for rpoint in reconstructed_points_with_plate_id
            ]

        rlonslats = lat_lon_points[valid_mask]  # remove invalid points
        rlons = rlonslats[:, 1]
        rlats = rlonslats[:, 0]

        return_tuple = ()

        if return_array:
            return_tuple += rlons, rlats
        else:
            reconstructed_points = Points(
                self.plate_reconstruction,
                rlons,
                rlats,
                time=time,
                plate_id=self.plate_id[valid_mask],  # remove invalid points
                age=self.age[valid_mask],  # remove invalid points
                anchor_plate_id=anchor_plate_id,
            )
            reconstructed_points.add_attributes(**self.attributes.copy())
            return_tuple += (reconstructed_points,)

        if return_point_indices:
            all_point_indices = np.arange(self.size, dtype=int)
            point_indices = all_point_indices[valid_mask]  # remove invalid points
            return_tuple += (point_indices,)

        # Return tuple of objects (unless only a single object, eg, just a 'Points' object).
        if len(return_tuple) == 1:
            return return_tuple[0]
        else:
            return return_tuple

    def reconstruct_to_birth_age(
        self, ages, anchor_plate_id=None, return_point_indices=False
    ):
        """Reconstructs points supplied to this `Points` object from the supplied initial time (`self.time`) to a range of times.

        The number of supplied times must equal the number of points supplied to this `Points` object (ie, 'self.size' attribute).
        Only those points that are reconstructable (see `Points`) and that have ages greater than or equal to the respective supplied ages
        (ie, at points that exist at the supplied ages) are reconstructed.

        Parameters
        ----------
        ages : array
            Geological times to reconstruct points to. Must have the same length as the number of points (`self.size` attribute).

        anchor_plate_id : int, optional
            Reconstruct points with respect to a certain anchor plate.
            By default, reconstructions are made with respect to `self.anchor_plate_id`
            (which is the anchor plate that the initial points at the initial time are relative to).

        return_point_indices : bool, default=False
            Return the indices of the points that are reconstructed.
            Those points with an age less than their respective supplied age have not yet appeared, and therefore are not reconstructed.
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.

        Raises
        ------
        ValueError
            If the number of ages is not equal to the number of points supplied to this `Points` object.

        Returns
        -------
        rlons, rlats : ndarray
            The longitude and latitude coordinate arrays of points reconstructed to the specified ages.
        point_indices : ndarray
            Only provided if `return_point_indices` is True.
            The indices of the returned points (that are reconstructed).
            This array is the same size as `rlons` and `rlats`.
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.

        Examples
        --------
        To reconstruct n seed points' locations to B Ma (for this example n=2, with (lon,lat) = (78,30) and (56,22) at time=0 Ma,
        and we reconstruct to B=10 Ma):

            # Longitude and latitude of n=2 seed points
            pt_lon = np.array([78., 56])
            pt_lat = np.array([30., 22])

            # Call the Points object!
            gpts = gplately.Points(model, pt_lon, pt_lat)
            print(gpts.features[0].get_all_geometries())   # Confirms we have features represented as points on a sphere

            ages = numpy.linspace(10,10, len(pt_lon))
            rlons, rlats = gpts.reconstruct_to_birth_age(ages)

        """
        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        # Call it 'reconstruct_ages' to avoid confusion with 'self.age' (which is time-of-appearance of points).
        reconstruct_ages = np.asarray(ages)

        if len(reconstruct_ages) != self.size:
            raise ValueError(
                "'ages' must be same length as number of points ({} != {})".format(
                    len(reconstruct_ages), self.size
                )
            )

        # Start with an empty array.
        lat_lon_points = np.empty((self.size, 2))

        # Determine which points are valid.
        #
        # These are those points that are reconstructable and have appeared before (or at) their respective reconstruct ages
        # (ie, have a time-of-appearance that's greater than or equal to the respective reconstruct age).
        valid_mask = self._reconstructable & (self.age >= reconstruct_ages)

        # Iterate over groups of points with the same plate ID.
        for (
            plate_id,
            point_indices_with_plate_id,
        ) in self._unique_plate_id_groups.items():

            # Determine which points (indices) with the current unique plate ID are valid.
            point_indices_with_plate_id = point_indices_with_plate_id[
                valid_mask[point_indices_with_plate_id]
            ]
            # If none of the points (with the current unique plate ID) are valid then skip to next unique plate ID.
            if point_indices_with_plate_id.size == 0:
                continue

            # Get all the unique reconstruct ages of all valid points with the current unique plate ID.
            point_reconstruct_ages_with_plate_id = reconstruct_ages[
                point_indices_with_plate_id
            ]
            unique_reconstruct_ages_with_plate_id = np.unique(
                point_reconstruct_ages_with_plate_id
            )
            for reconstruct_age in unique_reconstruct_ages_with_plate_id:
                # Indices of points with the current unique plate ID and the current unique reconstruct age.
                point_indices_with_plate_id_and_reconstruct_age = (
                    point_indices_with_plate_id[
                        point_reconstruct_ages_with_plate_id == reconstruct_age
                    ]
                )

                # Get the reconstructed points with the current unique plate ID and unique reconstruct age
                # (that exist at their respective reconstruct age).
                reconstructed_points_with_plate_id_and_reconstruct_age = pygplates.MultiPointOnSphere(
                    self.points[point_index]
                    for point_index in point_indices_with_plate_id_and_reconstruct_age
                )

                # First reconstruct the internal points from the initial time ('self.time') to present day using
                # our internal anchor plate ID (the same anchor plate used in '__init__').
                # Then reconstruct from present day to 'reconstruct_age' using the *requested* anchor plate ID.
                #
                # Note 'self.points' (and hence 'reconstructed_points_with_plate_id_and_reconstruct_age') are the locations at 'self.time'
                #      (just like 'self.lons' and 'self.lats').
                reconstruct_rotation = (
                    self.plate_reconstruction.rotation_model.get_rotation(
                        to_time=reconstruct_age,
                        moving_plate_id=plate_id,
                        from_time=0,
                        anchor_plate_id=anchor_plate_id,
                    )
                    * self.plate_reconstruction.rotation_model.get_rotation(
                        to_time=0,
                        moving_plate_id=plate_id,
                        from_time=self.time,
                        anchor_plate_id=self.anchor_plate_id,
                    )
                )
                reconstructed_points_with_plate_id_and_reconstruct_age = (
                    reconstruct_rotation
                    * reconstructed_points_with_plate_id_and_reconstruct_age
                )

                # Write the reconstructed points.
                lat_lon_points[point_indices_with_plate_id_and_reconstruct_age] = [
                    rpoint.to_lat_lon()
                    for rpoint in reconstructed_points_with_plate_id_and_reconstruct_age
                ]

        rlonslats = lat_lon_points[valid_mask]  # remove invalid points
        rlons = rlonslats[:, 1]
        rlats = rlonslats[:, 0]

        return_tuple = (rlons, rlats)

        if return_point_indices:
            all_point_indices = np.arange(self.size, dtype=int)
            point_indices = all_point_indices[valid_mask]  # remove invalid points
            return_tuple += (point_indices,)

        return return_tuple

    def plate_velocity(
        self,
        time,
        delta_time=1.0,
        *,
        velocity_delta_time_type=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t,
        velocity_units=pygplates.VelocityUnits.cms_per_yr,
        earth_radius_in_kms=pygplates.Earth.mean_radius_in_kms,
        anchor_plate_id=None,
        return_reconstructed_points=False,
        return_point_indices=False,
    ):
        """Calculates the east and north components of the tectonic plate velocities of the internal points at a particular geological time.

        The point velocities are calculated using the plate IDs of the internal points and the rotation model of the internal `PlateReconstruction` object.
        If the requested `time` differs from the initial time (`self.time`) then the internal points are first reconstructed to `time` before calculating velocities.
        Velocities are only calculated at points that are reconstructable (see `Points`) and that have ages greater than or equal to `time` (ie, at points that exist at `time`).

        Parameters
        ----------
        time : float
            The specific geological time (Ma) at which to calculate plate velocities.

        delta_time : float, default=1.0
            The time interval used for velocity calculations. 1.0Ma by default.

        velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
            How the two velocity times are calculated relative to `time` (defaults to ``[time + velocity_delta_time, time]``).

        velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.cms_per_yr
            Whether to return velocities in centimetres per year or kilometres per million years (defaults to centimetres per year).

        earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
            Radius of the Earth in kilometres.
            This is only used to calculate velocities (strain rates always use ``pygplates.Earth.equatorial_radius_in_kms``).

        anchor_plate_id : int, optional
            Anchor plate used to reconstruct the points and calculate velocities at their locations.
            By default, reconstructions are made with respect to `self.anchor_plate_id`
            (which is the anchor plate that the initial points at the initial time are relative to).

        return_reconstructed_points : bool, default=False
            Return the reconstructed points (as longitude and latitude arrays) in addition to the velocities.

        return_point_indices : bool, default=False
            Return the indices of those internal points at which velocities are calculated.
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.
            Those points with an age less than `time` have not yet appeared at `time`, and therefore will not have velocities returned.

        Returns
        -------
        velocity_lons, velocity_lats : ndarray
            The velocity arrays containing the *east* (longitude) and *north* (latitude) components of the velocity of each internal point that exists at `time`
            (ie, whose age greater than or equal to `time`).
        rlons, rlats : ndarray
            Only provided if `return_reconstructed_points` is True.
            The longitude and latitude coordinate arrays of the reconstructed points (at which velocities are calculated).
            These arrays are the same size as `velocity_lons` and `velocity_lats`.
        point_indices : ndarray
            Only provided if `return_point_indices` is True.
            The indices of the returned points (at which velocities are calculated).
            These are indices into `self.lons`, `self.lats`, `self.plate_id` and `self.age`.
            This array is the same size as `velocity_lons` and `velocity_lats`.

        Notes
        -----
        The velocities are in *centimetres per year* by default (not *kilometres per million years*, the default in `PlateReconstruction.get_point_velocities`).
        This difference is maintained for backward compatibility.

        For each velocity, the *east* component is first followed by the *north* component.
        This is different to `PlateReconstruction.get_point_velocities` where the *north* component is first.
        This difference is maintained for backward compatibility.

        See Also
        --------
        PlateReconstruction.get_point_velocities : Velocities of points calculated using topologies instead of plate IDs (assigned from static polygons).
        """
        if anchor_plate_id is None:
            anchor_plate_id = self.anchor_plate_id

        # Start with empty arrays.
        north_east_velocities = np.empty((self.size, 2))
        if return_reconstructed_points:
            lat_lon_points = np.empty((self.size, 2))

        # Determine time interval for velocity calculation.
        if (
            velocity_delta_time_type
            == pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
        ):
            from_time = time + delta_time
            to_time = time
        elif (
            velocity_delta_time_type
            == pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t
        ):
            from_time = time
            to_time = time - delta_time
        elif (
            velocity_delta_time_type
            == pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t
        ):
            from_time = time + delta_time / 2
            to_time = time - delta_time / 2
        else:
            raise ValueError(
                "'velocity_delta_time_type' value not one of pygplates.VelocityDeltaTimeType enumerated values"
            )
        # Make sure time interval is non-negative.
        if to_time < 0:
            from_time -= to_time
            to_time = 0

        # Determine which points are valid.
        #
        # These are those points that are reconstructable and have appeared before (or at) 'time'
        # (ie, have a time-of-appearance that's greater than or equal to 'time').
        valid_mask = self._reconstructable & (self.age >= time)

        # Iterate over groups of points with the same plate ID.
        for (
            plate_id,
            point_indices_with_plate_id,
        ) in self._unique_plate_id_groups.items():

            # Determine which points (indices) with the current unique plate ID are valid.
            point_indices_with_plate_id = point_indices_with_plate_id[
                valid_mask[point_indices_with_plate_id]
            ]
            # If none of the points (with the current unique plate ID) are valid then skip to next unique plate ID.
            if point_indices_with_plate_id.size == 0:
                continue

            # Get the reconstructed points with the current unique plate ID that have appeared before (or at) 'time'.
            reconstructed_points_with_plate_id = pygplates.MultiPointOnSphere(
                self.points[point_index] for point_index in point_indices_with_plate_id
            )

            # Stage rotation for the current unique plate ID.
            velocity_equivalent_stage_rotation = (
                self.plate_reconstruction.rotation_model.get_rotation(
                    to_time, plate_id, from_time, anchor_plate_id=anchor_plate_id
                )
            )

            # First reconstruct the internal points from the initial time ('self.time') to present day using
            # our internal anchor plate ID (the same anchor plate used in '__init__').
            # Then reconstruct from present day to 'time' using the *requested* anchor plate ID.
            #
            # Note 'self.points' (and hence 'reconstructed_points_with_plate_id') are the locations at 'self.time'
            #      (just like 'self.lons' and 'self.lats').
            reconstruct_rotation = (
                self.plate_reconstruction.rotation_model.get_rotation(
                    to_time=time,
                    moving_plate_id=plate_id,
                    from_time=0,
                    anchor_plate_id=anchor_plate_id,
                )
                * self.plate_reconstruction.rotation_model.get_rotation(
                    to_time=0,
                    moving_plate_id=plate_id,
                    from_time=self.time,
                    anchor_plate_id=self.anchor_plate_id,
                )
            )
            reconstructed_points_with_plate_id = (
                reconstruct_rotation * reconstructed_points_with_plate_id
            )

            velocity_vectors_with_plate_id = pygplates.calculate_velocities(
                reconstructed_points_with_plate_id,
                velocity_equivalent_stage_rotation,
                delta_time,
                velocity_units=velocity_units,
                earth_radius_in_kms=earth_radius_in_kms,
            )

            north_east_down_velocities_with_plate_id = (
                pygplates.LocalCartesian.convert_from_geocentric_to_north_east_down(
                    reconstructed_points_with_plate_id, velocity_vectors_with_plate_id
                )
            )

            # Write velocities of points with the current unique plate ID as (north, east) components.
            north_east_velocities[point_indices_with_plate_id] = [
                (ned.get_x(), ned.get_y())  # north, east
                for ned in north_east_down_velocities_with_plate_id
            ]

            # Also write the reconstructed points (if requested).
            if return_reconstructed_points:
                lat_lon_points[point_indices_with_plate_id] = [
                    rpoint.to_lat_lon() for rpoint in reconstructed_points_with_plate_id
                ]

        velocities = north_east_velocities[valid_mask]  # remove invalid points
        velocity_lons = velocities[:, 1]  # east
        velocity_lats = velocities[:, 0]  # north

        return_tuple = velocity_lons, velocity_lats

        if return_reconstructed_points:
            rlonslats = lat_lon_points[valid_mask]  # remove invalid points
            rlons = rlonslats[:, 1]
            rlats = rlonslats[:, 0]
            return_tuple += (rlons, rlats)

        if return_point_indices:
            all_point_indices = np.arange(self.size, dtype=int)
            point_indices = all_point_indices[valid_mask]  # remove invalid points
            return_tuple += (point_indices,)

        return return_tuple

    def motion_path(
        self, time_array, anchor_plate_id=None, return_rate_of_motion=False
    ):
        """Create a path of points to mark the trajectory of a plate's motion
        through geological time.

        Parameters
        ----------
        time_array : arr
            An array of reconstruction times at which to determine the trajectory
            of a point on a plate. For example:

                import numpy as np
                min_time = 30
                max_time = 100
                time_step = 2.5
                time_array = np.arange(min_time, max_time + time_step, time_step)

        anchor_plate_id : int, optional
            Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made
            with respect to the anchor plate ID specified in the `gplately.PlateReconstruction` object.
        return_rate_of_motion : bool, default=False
            Choose whether to return the rate of plate motion through time for each

        Returns
        -------
        rlons : ndarray
            An n-dimensional array with columns containing the longitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        rlats : ndarray
            An n-dimensional array with columns containing the latitudes of
            the seed points at each timestep in `time_array`. There are n
            columns for n seed points.
        """
        time_array = np.atleast_1d(time_array)

        # ndarrays to fill with reconstructed points and
        # rates of motion (if requested)
        rlons = np.empty((len(time_array), len(self.lons)))
        rlats = np.empty((len(time_array), len(self.lons)))

        for i, point_feature in enumerate(self.feature_collection):
            # Create the motion path feature
            motion_path_feature = pygplates.Feature.create_motion_path(
                point_feature.get_geometry(),
                time_array.tolist(),
                valid_time=(time_array.max(), time_array.min()),
                relative_plate=int(self.plate_id[i]),
                reconstruction_plate_id=(
                    anchor_plate_id  # if None then uses default anchor plate of 'self.plate_reconstruction'
                    if anchor_plate_id is not None
                    else self.plate_reconstruction.anchor_plate_id
                ),
            )

            reconstructed_motion_paths = self.plate_reconstruction.reconstruct(
                motion_path_feature,
                to_time=0,
                # from_time=0,
                reconstruct_type=pygplates.ReconstructType.motion_path,
                anchor_plate_id=anchor_plate_id,  # if None then uses default anchor plate of 'self.plate_reconstruction'
            )

            # Turn motion paths in to lat-lon coordinates
            for reconstructed_motion_path in reconstructed_motion_paths:
                trail = reconstructed_motion_path.get_motion_path().to_lat_lon_array()

            lon, lat = np.flipud(trail[:, 1]), np.flipud(trail[:, 0])

            rlons[:, i] = lon
            rlats[:, i] = lat

            # Obtain step-plot coordinates for rate of motion
            if return_rate_of_motion is True:
                StepTimes = np.empty(((len(time_array) - 1) * 2, len(self.lons)))
                StepRates = np.empty(((len(time_array) - 1) * 2, len(self.lons)))

                # Get timestep
                TimeStep = []
                for j in range(len(time_array) - 1):
                    diff = time_array[j + 1] - time_array[j]
                    TimeStep.append(diff)

                # Iterate over each segment in the reconstructed motion path, get the distance travelled by the moving
                # plate relative to the fixed plate in each time step
                Dist = []
                for reconstructed_motion_path in reconstructed_motion_paths:
                    for (
                        segment
                    ) in reconstructed_motion_path.get_motion_path().get_segments():
                        Dist.append(
                            segment.get_arc_length()
                            * _tools.geocentric_radius(
                                segment.get_start_point().to_lat_lon()[0]
                            )
                            / 1e3
                        )

                # Note that the motion path coordinates come out starting with the oldest time and working forwards
                # So, to match our 'times' array, we flip the order
                Dist = np.flipud(Dist)

                # Get rate of motion as distance per Myr
                Rate = np.asarray(Dist) / TimeStep

                # Manipulate arrays to get a step plot
                StepRate = np.zeros(len(Rate) * 2)
                StepRate[::2] = Rate
                StepRate[1::2] = Rate

                StepTime = np.zeros(len(Rate) * 2)
                StepTime[::2] = time_array[:-1]
                StepTime[1::2] = time_array[1:]

                # Append the nth point's step time and step rate coordinates to the ndarray
                StepTimes[:, i] = StepTime
                StepRates[:, i] = StepRate * 0.1  # cm/yr

        if return_rate_of_motion is True:
            return (
                np.squeeze(rlons),
                np.squeeze(rlats),
                np.squeeze(StepTimes),
                np.squeeze(StepRates),
            )
        else:
            return np.squeeze(rlons), np.squeeze(rlats)

    def flowline(
        self, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False
    ):
        """Create a path of points to track plate motion away from
        spreading ridges over time using half-stage rotations.

        Parameters
        ----------
        lons : arr
            An array of longitudes of points along spreading ridges.
        lats : arr
            An array of latitudes of points along spreading ridges.
        time_array : arr
            A list of times to obtain seed point locations at.
        left_plate_ID : int
            The plate ID of the polygon to the left of the spreading
            ridge.
        right_plate_ID : int
            The plate ID of the polygon to the right of the spreading
            ridge.
        return_rate_of_motion : bool, default False
            Choose whether to return a step time and step rate array for
            a step-plot of flowline motion.

        Returns
        -------
        left_lon : ndarray
            The longitudes of the __left__ flowline for n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        left_lat : ndarray
            The latitudes of the __left__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lon : ndarray
            The longitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.
        right_lat : ndarray
            The latitudes of the __right__ flowline of n seed points.
            There are n columns for n seed points, and m rows
            for m time steps in `time_array`.

        Examples
        --------
        To access the ith seed point's left and right latitudes and
        longitudes:

            for i in np.arange(0,len(seed_points)):
                left_flowline_longitudes = left_lon[:,i]
                left_flowline_latitudes = left_lat[:,i]
                right_flowline_longitudes = right_lon[:,i]
                right_flowline_latitudes = right_lat[:,i]
        """
        model = self.plate_reconstruction
        return model.create_flowline(
            self.lons,
            self.lats,
            time_array,
            left_plate_ID,
            right_plate_ID,
            return_rate_of_motion,
        )

    def _get_dataframe(self):
        import geopandas as gpd

        data = dict()
        data["Longitude"] = self.lons
        data["Latitude"] = self.lats
        data["Plate_ID"] = self.plate_id
        for key in self.attributes:
            data[key] = self.attributes[key]

        return gpd.GeoDataFrame(data)

    def save(self, filename):
        """Saves the feature collection used in the Points object under a given filename to the current directory.

        The file format is determined from the filename extension.

        Parameters
        ----------
        filename : string
            Can be provided as a string including the filename and the file format needed.

        Returns
        -------
        Feature collection saved under given filename to current directory.
        """
        filename = str(filename)

        if filename.endswith((".csv", ".txt", ".dat")):
            df = self._get_dataframe()
            df.to_csv(filename, index=False)

        elif filename.endswith((".xls", ".xlsx")):
            df = self._get_dataframe()
            df.to_excel(filename, index=False)

        elif filename.endswith("xml"):
            df = self._get_dataframe()
            df.to_xml(filename, index=False)

        elif (
            filename.endswith(".gpml")
            or filename.endswith(".gpmlz")
            or filename.endswith(".shp")
        ):
            self.feature_collection.write(filename)

        else:
            raise ValueError(
                "Cannot save to specified file type. Use csv, gpml, shp or xls file extension."
            )

    def rotate_reference_frames(
        self,
        reconstruction_time,
        from_rotation_features_or_model=None,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        to_rotation_features_or_model=None,  # filename(s), or pyGPlates feature(s)/collection(s) or a RotationModel
        from_rotation_reference_plate=0,
        to_rotation_reference_plate=0,
        non_reference_plate=701,
        output_name=None,
        return_array=False,
    ):
        """Rotate a grid defined in one plate model reference frame
        within a gplately.Raster object to another plate
        reconstruction model reference frame.

        Parameters
        ----------
        reconstruction_time : float
            The time at which to rotate the reconstructed points.
        from_rotation_features_or_model : str/`os.PathLike`, list of str/`os.PathLike`, or instance of `pygplates.RotationModel`
            A filename, or a list of filenames, or a pyGPlates
            RotationModel object that defines the rotation model
            that the input grid is currently associated with.
            `self.plate_reconstruction.rotation_model` is default.
        to_rotation_features_or_model : str/`os.PathLike`, list of str/`os.PathLike`, or instance of `pygplates.RotationModel`
            A filename, or a list of filenames, or a pyGPlates
            RotationModel object that defines the rotation model
            that the input grid shall be rotated with.
            `self.plate_reconstruction.rotation_model` is default.
        from_rotation_reference_plate : int, default = 0
            The current reference plate for the plate model the points
            are defined in. Defaults to the anchor plate 0.
        to_rotation_reference_plate : int, default = 0
            The desired reference plate for the plate model the points
            to be rotated to. Defaults to the anchor plate 0.
        non_reference_plate : int, default = 701
            An arbitrary placeholder reference frame with which
            to define the "from" and "to" reference frames.
        output_name : str, default None
            If passed, the rotated points are saved as a gpml to this filename.

        Returns
        -------
        Points
            An instance of the `Points` object containing the rotated points.
        """
        if output_name is not None:
            raise NotImplementedError("'output_name' parameter is not implemented")

        if from_rotation_features_or_model is None:
            from_rotation_features_or_model = self.plate_reconstruction.rotation_model
        if to_rotation_features_or_model is None:
            to_rotation_features_or_model = self.plate_reconstruction.rotation_model

        # Create the pygplates.FiniteRotation that rotates
        # between the two reference frames.
        from_rotation_model = pygplates.RotationModel(from_rotation_features_or_model)
        to_rotation_model = pygplates.RotationModel(to_rotation_features_or_model)
        from_rotation = from_rotation_model.get_rotation(
            reconstruction_time,
            non_reference_plate,
            anchor_plate_id=from_rotation_reference_plate,
        )
        to_rotation = to_rotation_model.get_rotation(
            reconstruction_time,
            non_reference_plate,
            anchor_plate_id=to_rotation_reference_plate,
        )
        reference_frame_conversion_rotation = to_rotation * from_rotation.get_inverse()

        # reconstruct points to reconstruction_time
        lons, lats = self.reconstruct(
            reconstruction_time,
            anchor_plate_id=from_rotation_reference_plate,
            return_array=True,
        )

        # convert FeatureCollection to MultiPointOnSphere
        input_points = pygplates.MultiPointOnSphere(
            (lat, lon) for lon, lat in zip(lons, lats)
        )

        # Rotate grid nodes to the other reference frame
        output_points = reference_frame_conversion_rotation * input_points

        # Assemble rotated points with grid values.
        out_lon = np.empty_like(self.lons)
        out_lat = np.empty_like(self.lats)
        for i, point in enumerate(output_points):
            out_lat[i], out_lon[i] = point.to_lat_lon()

        if return_array:
            return out_lon, out_lat
        else:
            return Points(
                self.plate_reconstruction,
                out_lon,
                out_lat,
                time=reconstruction_time,
                plate_id=self.plate_id.copy(),
                age=self.age.copy(),
                anchor_plate_id=to_rotation_reference_plate,
            )

Instance variables

prop age
Expand source code
@property
def age(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._age
prop anchor_plate_id
Expand source code
@property
def anchor_plate_id(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._anchor_plate_id
prop lats
Expand source code
@property
def lats(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._lats
prop lons
Expand source code
@property
def lons(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._lons
prop plate_id
Expand source code
@property
def plate_id(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._plate_id
prop plate_reconstruction
Expand source code
@property
def plate_reconstruction(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._plate_reconstruction
prop size
Expand source code
@property
def size(self):
    # Note: This is documented as an attribute in the class docstring.
    return len(self.points)
prop time
Expand source code
@property
def time(self):
    # Note: This is documented as an attribute in the class docstring.
    return self._time

Methods

def add_attributes(self, **kwargs)

Adds the value of a feature attribute associated with a key.

Example

# Define latitudes and longitudes to set up a Points object
pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add the attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

print(gpts.attributes)

The output would be:

{'a': [10, 2, 2], 'b': [2, 3, 3], 'c': [30, 0, 0]}

Parameters

**kwargs : sequence of key=item/s
A single key=value pair, or a sequence of key=value pairs denoting the name and value of an attribute.

Notes

  • An assertion is raised if the number of points in the Points object is not equal to the number of values associated with an attribute key. For example, consider an instance of the Points object with 3 points. If the points are ascribed an attribute temperature, there must be one temperature value per point, i.e. temperature = [20, 15, 17.5].
def copy(self)

Returns a copy of the Points object

Returns

Points
A copy of the current Points object
def flowline(self, time_array, left_plate_ID, right_plate_ID, return_rate_of_motion=False)

Create a path of points to track plate motion away from spreading ridges over time using half-stage rotations.

Parameters

lons : arr
An array of longitudes of points along spreading ridges.
lats : arr
An array of latitudes of points along spreading ridges.
time_array : arr
A list of times to obtain seed point locations at.
left_plate_ID : int
The plate ID of the polygon to the left of the spreading ridge.
right_plate_ID : int
The plate ID of the polygon to the right of the spreading ridge.
return_rate_of_motion : bool, default False
Choose whether to return a step time and step rate array for a step-plot of flowline motion.

Returns

left_lon : ndarray
The longitudes of the left flowline for n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
left_lat : ndarray
The latitudes of the left flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lon : ndarray
The longitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.
right_lat : ndarray
The latitudes of the right flowline of n seed points. There are n columns for n seed points, and m rows for m time steps in time_array.

Examples

To access the ith seed point's left and right latitudes and longitudes:

for i in np.arange(0,len(seed_points)):
    left_flowline_longitudes = left_lon[:,i]
    left_flowline_latitudes = left_lat[:,i]
    right_flowline_longitudes = right_lon[:,i]
    right_flowline_latitudes = right_lat[:,i]
def get_geodataframe(self)

Returns the output of Points.get_geopandas_dataframe().

Adds a shapely point geometry attribute to each point in the Points object. pandas.DataFrame that has a column with geometry Any existing point attributes are kept.

Returns

GeoDataFrame : instance of geopandas.GeoDataFrame
A pandas.DataFrame with rows equal to the number of points in the Points object, and an additional column containing a shapely geometry attribute.

Example

pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add sample attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

gpts.get_geopandas_dataframe()

…has the output:

    a  b   c                     geometry
0  10  2  30  POINT (140.00000 -30.00000)
1   2  3   0  POINT (150.00000 -40.00000)
2   2  3   0  POINT (160.00000 -50.00000)
def get_geopandas_dataframe(self)

Adds a shapely point geometry attribute to each point in the Points object. pandas.DataFrame that has a column with geometry Any existing point attributes are kept.

Returns

GeoDataFrame : instance of geopandas.GeoDataFrame
A pandas.DataFrame with rows equal to the number of points in the Points object, and an additional column containing a shapely geometry attribute.

Example

pt_lons = np.array([140., 150., 160.])
pt_lats = np.array([-30., -40., -50.])

gpts = gplately.Points(model, pt_lons, pt_lats)

# Add sample attributes a, b and c to the points in the Points object
gpts.add_attributes(
    a=[10,2,2],
    b=[2,3,3],
    c=[30,0,0],
)

gpts.get_geopandas_dataframe()

…has the output:

    a  b   c                     geometry
0  10  2  30  POINT (140.00000 -30.00000)
1   2  3   0  POINT (150.00000 -40.00000)
2   2  3   0  POINT (160.00000 -50.00000)
def motion_path(self, time_array, anchor_plate_id=None, return_rate_of_motion=False)

Create a path of points to mark the trajectory of a plate's motion through geological time.

Parameters

time_array : arr
An array of reconstruction times at which to determine the trajectory of a point on a plate. For example:
import numpy as np
min_time = 30
max_time = 100
time_step = 2.5
time_array = np.arange(min_time, max_time + time_step, time_step)
anchor_plate_id : int, optional
Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made with respect to the anchor plate ID specified in the PlateReconstruction object.
return_rate_of_motion : bool, default=False
Choose whether to return the rate of plate motion through time for each

Returns

rlons : ndarray
An n-dimensional array with columns containing the longitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
rlats : ndarray
An n-dimensional array with columns containing the latitudes of the seed points at each timestep in time_array. There are n columns for n seed points.
def plate_velocity(self, time, delta_time=1.0, *, velocity_delta_time_type=pygplates.pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, velocity_units=pygplates.pygplates.VelocityUnits.cms_per_yr, earth_radius_in_kms=6371.009, anchor_plate_id=None, return_reconstructed_points=False, return_point_indices=False)

Calculates the east and north components of the tectonic plate velocities of the internal points at a particular geological time.

The point velocities are calculated using the plate IDs of the internal points and the rotation model of the internal PlateReconstruction object. If the requested time differs from the initial time (self.time) then the internal points are first reconstructed to time before calculating velocities. Velocities are only calculated at points that are reconstructable (see Points) and that have ages greater than or equal to time (ie, at points that exist at time).

Parameters

time : float
The specific geological time (Ma) at which to calculate plate velocities.
delta_time : float, default=1.0
The time interval used for velocity calculations. 1.0Ma by default.
velocity_delta_time_type : {pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t, pygplates.VelocityDeltaTimeType.t_to_t_minus_delta_t, pygplates.VelocityDeltaTimeType.t_plus_minus_half_delta_t}, default=pygplates.VelocityDeltaTimeType.t_plus_delta_t_to_t
How the two velocity times are calculated relative to time (defaults to [time + velocity_delta_time, time]).
velocity_units : {pygplates.VelocityUnits.cms_per_yr, pygplates.VelocityUnits.kms_per_my}, default=pygplates.VelocityUnits.cms_per_yr
Whether to return velocities in centimetres per year or kilometres per million years (defaults to centimetres per year).
earth_radius_in_kms : float, default=pygplates.Earth.mean_radius_in_kms
Radius of the Earth in kilometres. This is only used to calculate velocities (strain rates always use pygplates.Earth.equatorial_radius_in_kms).
anchor_plate_id : int, optional
Anchor plate used to reconstruct the points and calculate velocities at their locations. By default, reconstructions are made with respect to self.anchor_plate_id (which is the anchor plate that the initial points at the initial time are relative to).
return_reconstructed_points : bool, default=False
Return the reconstructed points (as longitude and latitude arrays) in addition to the velocities.
return_point_indices : bool, default=False
Return the indices of those internal points at which velocities are calculated. These are indices into self.lons, self.lats, self.plate_id and self.age. Those points with an age less than time have not yet appeared at time, and therefore will not have velocities returned.

Returns

velocity_lons, velocity_lats : ndarray
The velocity arrays containing the east (longitude) and north (latitude) components of the velocity of each internal point that exists at time (ie, whose age greater than or equal to time).
rlons, rlats : ndarray
Only provided if return_reconstructed_points is True. The longitude and latitude coordinate arrays of the reconstructed points (at which velocities are calculated). These arrays are the same size as velocity_lons and velocity_lats.
point_indices : ndarray
Only provided if return_point_indices is True. The indices of the returned points (at which velocities are calculated). These are indices into self.lons, self.lats, self.plate_id and self.age. This array is the same size as velocity_lons and velocity_lats.

Notes

The velocities are in centimetres per year by default (not kilometres per million years, the default in PlateReconstruction.get_point_velocities()). This difference is maintained for backward compatibility.

For each velocity, the east component is first followed by the north component. This is different to PlateReconstruction.get_point_velocities() where the north component is first. This difference is maintained for backward compatibility.

See Also

PlateReconstruction.get_point_velocities()
Velocities of points calculated using topologies instead of plate IDs (assigned from static polygons).
def reconstruct(self, time, anchor_plate_id=None, return_array=False, return_point_indices=False)

Reconstructs points supplied to this Points object from the supplied initial time (self.time) to the specified time (time).

Only those points that are reconstructable (see Points) and that have ages greater than or equal to time (ie, at points that exist at time) are reconstructed.

Parameters

time : float
The specific geological time (Ma) to reconstruct features to.
anchor_plate_id : int, optional
Reconstruct features with respect to a certain anchor plate. By default, reconstructions are made with respect to self.anchor_plate_id (which is the anchor plate that the initial points at the initial time are relative to).
return_array : bool, default=False
Return a 2-tuple of numpy.ndarray, rather than a Points object.
return_point_indices : bool, default=False
Return the indices of the points that are reconstructed. Those points with an age less than time have not yet appeared at time, and therefore are not reconstructed. These are indices into self.lons, self.lats, self.plate_id and self.age.

Returns

reconstructed_points : Points
Only provided if return_array is False. The reconstructed points in a Points object.
rlons, rlats : ndarray
Only provided if return_array is True. The longitude and latitude coordinate arrays of the reconstructed points.
point_indices : ndarray
Only provided if return_point_indices is True. The indices of the returned points (that are reconstructed). This array is the same size as rlons and rlats (or size of reconstructed_points). These are indices into self.lons, self.lats, self.plate_id and self.age.
def reconstruct_to_birth_age(self, ages, anchor_plate_id=None, return_point_indices=False)

Reconstructs points supplied to this Points object from the supplied initial time (self.time) to a range of times.

The number of supplied times must equal the number of points supplied to this Points object (ie, 'self.size' attribute). Only those points that are reconstructable (see Points) and that have ages greater than or equal to the respective supplied ages (ie, at points that exist at the supplied ages) are reconstructed.

Parameters

ages : array
Geological times to reconstruct points to. Must have the same length as the number of points (self.size attribute).
anchor_plate_id : int, optional
Reconstruct points with respect to a certain anchor plate. By default, reconstructions are made with respect to self.anchor_plate_id (which is the anchor plate that the initial points at the initial time are relative to).
return_point_indices : bool, default=False
Return the indices of the points that are reconstructed. Those points with an age less than their respective supplied age have not yet appeared, and therefore are not reconstructed. These are indices into self.lons, self.lats, self.plate_id and self.age.

Raises

ValueError
If the number of ages is not equal to the number of points supplied to this Points object.

Returns

rlons, rlats : ndarray
The longitude and latitude coordinate arrays of points reconstructed to the specified ages.
point_indices : ndarray
Only provided if return_point_indices is True. The indices of the returned points (that are reconstructed). This array is the same size as rlons and rlats. These are indices into self.lons, self.lats, self.plate_id and self.age.

Examples

To reconstruct n seed points' locations to B Ma (for this example n=2, with (lon,lat) = (78,30) and (56,22) at time=0 Ma, and we reconstruct to B=10 Ma):

# Longitude and latitude of n=2 seed points
pt_lon = np.array([78., 56])
pt_lat = np.array([30., 22])

# Call the Points object!
gpts = gplately.Points(model, pt_lon, pt_lat)
print(gpts.features[0].get_all_geometries())   # Confirms we have features represented as points on a sphere

ages = numpy.linspace(10,10, len(pt_lon))
rlons, rlats = gpts.reconstruct_to_birth_age(ages)
def rotate_reference_frames(self, reconstruction_time, from_rotation_features_or_model=None, to_rotation_features_or_model=None, from_rotation_reference_plate=0, to_rotation_reference_plate=0, non_reference_plate=701, output_name=None, return_array=False)

Rotate a grid defined in one plate model reference frame within a gplately.Raster object to another plate reconstruction model reference frame.

Parameters

reconstruction_time : float
The time at which to rotate the reconstructed points.
from_rotation_features_or_model : str/os.PathLike, list of str/os.PathLike, or instance of pygplates.RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid is currently associated with. self.plate_reconstruction.rotation_model is default.
to_rotation_features_or_model : str/os.PathLike, list of str/os.PathLike, or instance of pygplates.RotationModel
A filename, or a list of filenames, or a pyGPlates RotationModel object that defines the rotation model that the input grid shall be rotated with. self.plate_reconstruction.rotation_model is default.
from_rotation_reference_plate : int, default = 0
The current reference plate for the plate model the points are defined in. Defaults to the anchor plate 0.
to_rotation_reference_plate : int, default = 0
The desired reference plate for the plate model the points to be rotated to. Defaults to the anchor plate 0.
non_reference_plate : int, default = 701
An arbitrary placeholder reference frame with which to define the "from" and "to" reference frames.
output_name : str, default None
If passed, the rotated points are saved as a gpml to this filename.

Returns

Points
An instance of the Points object containing the rotated points.
def save(self, filename)

Saves the feature collection used in the Points object under a given filename to the current directory.

The file format is determined from the filename extension.

Parameters

filename : string
Can be provided as a string including the filename and the file format needed.

Returns

Feature collection saved under given filename to current directory.